% readme.txt %---------------- Common parameters: %---------------- mu = 3; % risk aversion beta = 0.96; % subjective discount factor delta = 0.08; % depreciation A = 1; % productivity alpha = 0.36; % capital's share of income maxkap = 16; % maximum value of capital grid inckap = 0.2; % size of capital grid increments kap = minkap:inckap:maxkap; % state of assets nkap = length(kap); % number of grid points %----------------------------------- Parameters for Markov endowment process %----------------------------------- % approximate labor endowment shocks with seven states Markov chain % log(s_t) = rho*log(s_t-1)+sigmaint*sqrt(1-rho^2)*error_t N = 7; % number of discretized states rho = 0.2; % first-order autoregressive coefficient sigmaint = 0.4; % intermediate value to calculate sigma sigma = sigmaint*sqrt(1-rho^2); % standard deviation of error_t %----------------------------------- Parameters for iid endowment process %----------------------------------- labor = 1.0903; % mean of labor sigs1 = 0.2233; % variance for s1 sigs2 = 0.6884; % variance for s2 The directory has several files: bewleyplot.m: produce two figures: 1. the figure of bewley model with production, 2. invariate distribution of capital for b = 3 case. Markov chain labor income shocks; b = 3; b = 6. bewleyplot2.m: produce the figure of bewley model with production, i i d labor income shocks for two mean preserving processes with the same mean b = 0. Note: The above two files take data saved in two *.mat files as input without computations. The two *.mat files are: bewleydata.mat: the workspace saved after running bewley99.m(Markov chain labor income shocks, b=3,b=6. bewley99v2.mat: the workspace saved after running bewley99v2.m(iid labor income shocks for two processes, b = 0) Three *.m files are used: bewley99.m,bewley99v2.m: script file aiyagari2.m: function file Bewley*.m are slight revisions of bewley.m in task4. Readbewly.txt in task4 has detailed comments.