
1 Overview

This version: April 1, 2009.
This file is a rough user’s guide to the software, linlagex. As a final version

of the software becomes available, a more detailed file will be made available.
For the time being, an overview of the method and its implementation into
MATLAB as well as two of the example models included with the software are
discussed (a sticky-information model (Trabandt 2007) and a labor-hoarding
model (Wang and Wen 2006)) in order to illustrate how models with lagged
expectations (infinite series reaching back into the infinite past with the first
example and single lagged expectations reaching back into the finite past) can
be implemented with the software. The current options and their defaults
are explained in the final section.

2 Overview of the Method

The reader wishing to only use the software is advised to skip this section.
This section is designed to provide a brief overview of the methods presented
in the associated paper and, thus, sacrifices much of the derivation for the
sake of brevity: the truly interested reader is directed to the associated paper.

The software is designed to solve linear rational expectations models of
the following form:

0 =

I
∑

i=0

AiEt−i [Yt+1] +

I
∑

i=0

BiEt−i [Yt] +

I
∑

i=0

CiEt−i [Yt−1]

+

I
∑

i=0

FiEt−i [Wt+1] +

I
∑

i=0

GiEt−i [Wt](1)

(2) Wt =
∞

∑

j=0

N jǫt−j , ǫt ∼ i.i.d.N (0,Ω)

(3) lim
j→∞

ξ−jEt [Yt+j] = 0, ∀ξ ∈ R s.t. ξ > gu, where gu ≥ 1

where Yt be an n× 1 vector of endogenous variables of interest, Wt an k × 1
vector of exogenous processes with moving average coefficients {N j}

∞

j=0 con-
sistent with a VAR(1) representation, and where I ∈ N0. That the system
not be underdetermined, the dimensions of the matrices in (1) are such that

1

there are as many equations (k) as endogenous variables of interest. Follow-
ing, e.g., Uhlig (1999) and Sims (2001), variables dated t are in the informa-
tion set at t; thusly, “state” variables are the non-empty column spaces of
Ci.

As I show in the associated paper, the essentially “infinite dimensional”
problem (by expanding the state vector for standard methods, i.e. Uhlig
(1999), GENSYS, DYNARE, SOLAB, etc.) can be converted to a non-
autonomous non-homogenous deterministic difference equation in matrices
of size n× k.

Following Muth (1961) and Taylor (1986), the solution in the form of MA
coefficients is

Yt =
∞

∑

j=0

Θjǫt−j(4)

where Θj is of size n× k.
Inserting the MA(∞) representation into equation (1),

0 =

∞
∑

j=0





min(I,j)
∑

i=0

Ai



 Θj+1ǫt−j +

∞
∑

j=0





min(I,j)
∑

i=0

Bi



Θjǫt−j

+

∞
∑

j=0





min(I,j+1)
∑

i=0

Ci



 Θjǫt−j−1 +

∞
∑

j=0





min(I,j)
∑

i=0

Fi



Nj+1ǫt−j

+

∞
∑

j=0





min(I,j)
∑

i=0

Gi



Njǫt−j(5)

and defining

(6) M̃j =

min(I,j)
∑

i=0

Mi, for M = A,B,C, F,G

yields the non-stochastic linear recursion

(7) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1 + F̃jN
j+1 + G̃jN

j

with initial conditions

(8) Θ−1 = 0

and terminal conditions from (3)

(9) lim
j→∞

ξ−jΘj = 0

2

Essentially, a unique solution with respect to the uniform growth restric-
tion will exist if the terminal conditions from equation (9) provide “enough”
linear restrictions on the recursion to derive “initial conditions” for Θ0.

So long as I is finite, we can convert the difference equation to block
tri-diagonal system of I + 1 linear equations:





















B̃0 Ã0 0 . . . 0

C̃1 B̃1 Ã1 0 . . . 0

0 C̃2 B̃2 Ã2 0 . . . 0
...

...

0 . . . 0 C̃I−1 B̃I−1 ÃI−1

0 . . . 0 −
(

ZI
21Z

I
11

−1
)

In







































Θ0

Θ1

Θ2
...

ΘI−1

ΘI



















=





















−F̃0N
1 − G̃0N

0

−F̃1N
2 − G̃1N

1

−F̃2N
3 − G̃2N

2

...

−F̃I−1N
I − G̃I−1N

I−1
(

ZI
22 − ZI

21Z
I
11

−1
ZI

12

)

MIN
I





















(10)

with In being the n-dimensional identity matrix. The last equation is de-
rived via a QZ-decomposition of the autonomous (remember, I is finite, thus
the coefficients of the recursion are non-varying for j ≥ I) non-homogenous
difference equation:

(11)

[

0 −AI

In 0

] [

ΘI

ΘI+1

]

=

[

CI BI

0 In

] [

ΘI−1

ΘI

]

+

[

FIN
I+1 +GIN

I

0

]

If the system has k generalized eigenvalues less than or equal to the
maximal growth rate gu and k greater than the same, and if the given initial
conditions are “translatable” (a more detailed discussion of these conditions
can be found in the associated paper, based on the discussion in Klein (2000)),
then ∀j ≥ I

(12) Θj =
(

Z21Z
−1
11

)

Θj−1 +
(

Z22 − Z21Z
−1
11 Z12

)

MIN
I

where

(13) Mj = −T−1
22

∞
∑

k=0

[

T−1
22 S22

]k
Q2

[

FjN
k+1 +GjN

k

0

]

The matrices Q, T , S, and Z are associated with the QZ-decomposition and
the interested reader is directed to the discussion in the associated paper.

3

If I is infinite, additional assumptions are needed. Namely that the
limit of the ”sum” matrices defined earlier exist: thus(where k and l denote
row and column)

(14) lim
j→∞

(

M̃j

)

k,l
=

(

M̃∞

)

k,l
, for M = A,B,C, F,G

In the associated paper, I show (using the definition of a limit in R
1, that

there exists some I(δ)max, where δ is a tolerance level, such that the system
can be reduced to the form derived above.

(15) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1 + F̃jNj+1 + G̃jNj , 0 ≤ j < I(δ)max

and

(16) 0 = Ã∞Θj+1 + B̃∞Θj + C̃∞Θj−1 + F̃∞Nj+1 + G̃∞Nj, j ≥ I(δ)max

Details can be found in the associated paper. Note that this is still an
approximation of the actual solution when lagged expectations reach back
into the infinite past, but I have formalized the method of approximating
(e.g. qualifying statements in the sticky-information literature of the form
“adding further lagged expectations doesn’t change the solution much”).

Thus, a solution for the infinite MA coefficients has been found. These
coefficients are the impulse response functions (see Hamilton (1994, pp. 318-
19)).

The impulse responses to anticipated/pre-announced shocks can be found
(see Taylor (1986))by solving the following recursion:

(17) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1, forj < J

(18) 0 = ÃjΘj+1 + B̃jΘj + C̃jΘj−1 + F̃jN
j+1−J + G̃jN

j−J , forj ≥ J

with initial conditions

(19) Θ−1 = 0

and terminal conditions from (3)

(20) lim
j→∞

ξ−jΘj = 0

Solving this requires solving a system of linear equations with the recursive
form derived via a QZ-decomposition for the autonomous part of the recur-
sion: the framework for doing such was already established in the foregoing!

4

Only the entries on the right-hand-side of the tri-diagonal system presented
above change (if J > I, the both sides will need to be extended, but the new
entries will simply repeat values already determined).

Population moments can be found via an inverse Fourier transformation
of the population spectrum (see Hamilton (1994) for the derivation, Uh-
lig (1999) and associated programs for implementation and inclusion of the
HP-filter, and my associated paper for the “recursive” system used in the
calculations here) if the model is covariance stationary.

Simulations and simulated moments can be obtained by drawing a se-
quence of shocks from the distribution of the shocks associated with the
exogenous processes.

3 Using the Software

The software solves for models of the form

0 =
I

∑

i=0

AiEt−i [Yt+1] +
I

∑

i=0

BiEt−i [Yt] +
I

∑

i=0

CiEt−i [Yt−1]

+

I
∑

i=0

FiEt−i [Wt+1] +

I
∑

i=0

GiEt−i [Wt](21)

(22) Wt =

∞
∑

j=0

N jǫt−j , ǫt ∼ i.i.d.N (0,Ω)

(23) lim
j→∞

ξ−jEt [Yt+j] = 0, ∀ξ ∈ R s.t. ξ > gu, where gu ≥ 1

where Yt be an n× 1 vector of endogenous variables of interest, Wt an k × 1
vector of exogenous processes with moving average coefficients {N j}

∞

j=0 con-
sistent with a VAR(1) representation, and where I ∈ N0. That the system
not be underdetermined, the dimensions of the matrices in (1) are such that
there are as many equations (k) as endogenous variables of interest. Follow-
ing, e.g., Uhlig (1999) and Sims (2001), variables dated t are in the informa-
tion set at t; thusly, “state” variables are the non-empty column spaces of
Ci.

The user needs to define (in a MATLAB “.m file”):

• The structural parameters of the model,

5

• The names of the column spaces (i.e. variables) of Yt and Wt as MAT-
LAB strings in a MATLAB “cell” (i.e. using curly brackets) vector,

• A0, B0, C0, F0, and G0 (the coefficient matrices with out lagged expec-
tations) as MATLAB matrices,

• Functions Aj, Bj , Cj, Fj , and Gj (the coefficient matrices with lagged
expectations) as MATLAB strings (My software will translate these
into MATLAB autonomous functions), unless no lagged expectations
are present,

• it_name, the name of “j” used by the user in the preceding matrix func-
tions, as a MATLAB string, unless no lagged expectations are present,

• it_max_value, the lag of the ”most lagged” expectation in the model
(i.e. ”I” in the statement of the problem above), as either an inte-
ger when ”I” is finite or as a string if ”I” is infinite — if no lagged
expectations are present, this is equal to 0,

• Matrices N and Ω to define the exogenous process

• PERIOD, the number of periods per year in the model (e.g. “4” if the
model is quarterly), as a MATLAB scalar,

• call “linlagex” at the end of the “.m file”.

The user, who does not have MATLAB’s Symbolic Toolkbox, and who
wants to solve a model with infinite lagged expectations, needs to additionally
define:

• A_inf, B_inf, C_inf, F_inf, and G_inf (the sum of the coefficient
matrices; e.g. A_inf=

∑

∞

i=0Ai, B_inf=
∑

∞

i=0Bi, etc.) as MATLAB
matrices

All users can, additionally, define the options listed in the last section of
this guide to control the solution and output of the program.

To better understand the implementation, two of the included example
programs are discussed.

4 Example: Trabandt (2007)

Trabandt (2007) derives a DSGE model with sticky-information price setters

6

under monopolistic competition. The structural equations of the model are:

0 = −mt − πt +mt−1 + ξt

0 = −rrt + µzzt + µggt

0 = −mt +
σ

scν
xt −

1

ν
(

R̄− 1
)Rt +

σ

scνψ
zt − γggt

0 =
sc

σ
Et [πt+1] + Et [xt+1] +

sc

σ
rrt − xt −

sc

σ
Rt

0 = −πt +
1 − λ

λ
ξxt + (1 − λ)

∞
∑

i=0

λiEt−i−1 [πt + ξ∆xt]

0 = −∆xt + xt − xt−1

zt = ρzzt−1 + ǫzt , ǫ
z
t ∼ N

(

0, σ2
z

)

gt = ρggt−1 + ǫ
g
t , ǫ

g
t ∼ N

(

0, σ2
g

)

ξt = ρξξt−1 + ǫ
ξ
t , ǫ

ξ
t ∼ N

(

0, σ2
ξ

)

The variables can be divided into endogenous variables:

(24) Yt =
[

mt πt rrt xt Rt ∆xt

]

′

and exogenous variables:

(25) Wt =
[

zt gt ξt
]

′

All I need to do now is tell MATLAB where to find the LinLagEx software
and enter the model into the program.

To tell MATLAB where to find the software, enter the folder linlagex into
you path (File-¿Set Path). Or if your model file is in a subdirectory of

LinLagEx_Version_xx

Starting with the parameter values, steady state relationships and sim-
plifying parameter definitions:

%Parameters

lambda=0.75;

rho_z=0.95;

sigma_eps_z=0.71;

rho_g=0.95;

sigma_eps_g=0.6;

rho_zi=0.50;

7

sigma_eps_zi=0.80;

beta=0.99;

sigma=2;

phi=1.5;

v=2;

alpha=2/3;

theta=6;

%Steady States

g_bar=0.3;

zT_bar=1;

R_bar=1/beta;

y_bar=zT_bar;

c_bar=y_bar-g_bar;

sc=c_bar/y_bar;

w=phi/alpha+1/alpha-1;

xi=(w+sigma/sc)/(1+theta*w);

a_1=sc/sigma;

muz=sigma*(1+w)*(rho_z-1)/(sc*w+sigma);

a_3=sc*muz/sigma;

mug=(sigma*(rho_g-1)/sc)*((sigma*(1-sc)/(sc*w+sigma))+sc-1);

a_2=sc*mug/sigma;

psi=(w+sigma/sc)/(1+w);

gamma_g=(sigma*(1-sc)/(sc*v))*(1-(sigma/sc)/(w+sigma/sc));

Now, I need to name the column spaces of the model (i.e. give the
variables names).

%Variable names

ENDOGENOUS_VARIABLE_NAMES={’Real Money Supply’

’Inflation’

’Natural Real Interest Rate’

’Output Gap’

’Nominal Interest Rate’

’Change in Output Gap’};

EXOGENOUS_VARIABLE_NAMES={’Technology’

’Government Spending’

’Money Supply’};

Having set parameter values and having named variables, I can enter the
matrices without lagged expectations. Defining the matrices A0, B0, C0, F0, G0,:

8

% m pi rr x R Dx

A_0=[0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 sc/sigma 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0];

% m pi rr x R Dx

B_0=[-1 -1 0 0 0 0

0 0 -1 0 0 0

-1 0 0 sigma/(sc*v) -1/(v*(R_bar-1)) 0

0 0 sc/sigma -1 -sc/sigma 0

0 -1 0 xi*(1-lambda)/lambda 0 0

0 0 0 1 0 -1];

% m pi rr x R Dx

C_0=[1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 -1 0 0];

% z g zi

F_0=[zeros(6,3)];

% z g zi

G_0=[0 0 1

muz mug 0

sigma/(sc*v*psi) -gamma_g 0

0 0 0

0 0 0

0 0 0];

Eq. (1) in the paper is thus complete with the exception of the lagged
expectations from the Phillips curve.

Before the rest of the equations are entered, I need to define the name of
the iteration counter (i.e. the ”i” in the sum of the Phillips curve equation)
and set its maximum value to ’infinity’.

%name of the counter used in subsequent matrices

it_name=’J_1’;

%maximum value of counter: either ’infinity’ or a scalar (without

9

%quotation marks)

it_max_value=’infinity’;

Now, I can enter the rest of the matrices as MATLAB ’strings’. Noting that
the counter must start at 1 (i.e. Et−1, Et−2, ..., Et−it max value).

%counter matrices

A_j=’[zeros(6,6)]’;

% m pi rr x R Dx

B_j=’[zeros(4,6); 0 (1-lambda)*lambda^(J_1-1) 0 0 0 xi*(1-lambda)*lambda^(J_1-1); zeros(1,6)]’;

C_j=’[zeros(6,6)]’;

F_j=’[zeros(6,3)]’;

G_j=’[zeros(6,3)]’;

Note that ‘zeros(q,q)’ yields a q*q matrix of zeros. One difficulty can
arise: MATLAB does not allow a string to be entered over several lines.
Thus the definition of Bj above must be entered in on one single line of code.
This can be rather tedious at times, so here’s the work around:

B_j=[’[zeros(4,6);’...

’0 (1-lambda)*lambda^(J_1-1) 0 0 0 xi*(1-lambda)*lambda^(J_1-1);’...

’zeros(1,6)]’];

Or

B_j=[’[zeros(4,6);’...

’0 (1-lambda)*lambda^(J_1-1) 0 0’...

’0 xi*(1-lambda)*lambda^(J_1-1);’...

’zeros(1,6)]’];

As long as columns are separated by a semi-colon, it makes no difference
where the string is split up - MATLAB reads the string as a single line.

Though not necessary if the optional MATLAB Symbolic Toolbox is in-
stalled, I then enter the limiting matrices Ã∞, B̃∞, C̃∞, F̃∞, G̃∞, to mimimze
the computation time needed by my program.

%limit matrices

%If a counter goes to infinity, please enter the limiting summed matrices

A_inf=[A_0];

B_inf=[-1 -1 0 0 0 0

0 0 -1 0 0 0

10

-1 0 0 sigma/(sc*v) -1/(v*(R_bar-1)) 0

0 0 sc/sigma -1 -sc/sigma 0

0 0 0 xi*(1-lambda)/lambda 0 xi

0 0 0 1 0 -1];

C_inf=[C_0];

F_inf=[F_0];

G_inf=[G_0];

Note that as lagged expectations only entered in through the B matrices, all
other matrices remain identical to their counterparts without lagged expec-
tations.

Eq (1) from my paper is complete, I need only enter in eqs (2) and (3).
The matrices N and Ω define the exogenous processes:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Define exogenous process as a VAR(1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%AR-coefficients

N=[rho_z,0,0;0,rho_g,0;0,0,rho_zi];

%Covariance matrix

Omega=[sigma_eps_z,0,0; 0,sigma_eps_g,0;0,0,sigma_eps_zi];

The default setting for eq (3) is to limit the model to unit-root growth
and I have no reason to permit any other form of growth. Thus, nothing is
entered.

Finally, I set the only real mandatory option:

%Options

PERIOD=4;

Thus defining the model as a quarterly model (needed not only for plots and
the like, but for HP-filtering as well).

Finally, I tell MATLAB to call linlagex.m, the main program of my rou-
tine:

linlagex;

Note that Trabandt (2007) approximated his model with a finite number
of lagged expectations as opposed to a finite number of lagged expectation
errors. To obtain his solution, set it max value to 20 and remove the limiting
matrices (both from the .m-file and, if there, the MATLAB desktop).

11

5 Example: Wang and Wen (2007) - Burn-

side Example

Wang and Wen (2006) derive an RBC-model with labor hoarding in their
second example. The structural equations of the model are (in log-deviations
from steady states):

0 = −αnt + Et−N [At + λt + α (ut + kt−1) − αet]

0 = λt + ct − θt

0 = At + (1 − α) (et + nt − kt−1) − (φ− α)ut

0 = At + λt + α (ut + kt−1) − αnt − (α + π) et

0 = −λt − ηkt + Et

[

λt+1 +
η

1 − α
At+1 − ηut+1 + η (et+1 + nt+1)

]

0 = At +

(

α + si

1 − δ̄

δ̄

)

kt−1 −
si

δ̄
kt − scct − sggt + (α− si ∗ φ)ut + (1 − α) (et + nt)

0 = −yt + At + αkt−1 + αut + (1 − α) et + (1 − α)nt




At

θt

gt



 =





ρa 0 0
0 ρθ 0
0 0 ρg









At−1

θt−1

gt−1



 +





ǫAt
ǫθt
ǫ
g
t



 ,





ǫAt
ǫθt
ǫ
g
t



 ∼ N (0, I3)

A few comments are in order here: (1) as no values were given, it is assumed
that the steady states of the exogenous processes are equal to one (thus
leading to the last equation in the foregoing), (2) the timing of the variable
k (capital) needs to be changed in accord with the timing structure (i.e.
capital used for production today is known yesterday, thus kt−1 is used in
production, (3) labor (nt) is known N periods in advance and can be taken
out of the expectations in the first equation (ignoring the fact that labeling
labor nt doesn’t strictly conform with the information structure of variables
introduced in my paper).

Dividing the variables into endogenous:

(26) Yt =
[

λt ut kt et nt ct yt

]

′

and exogenous variables:

(27) Wt =
[

At θt gt

]

′

All I need to do now is tell MATLAB where to find the LinLagEx software
and enter the model into the program.

To tell MATLAB where to find the software, enter the folder linlagex into
you path (File-¿Set Path). Or if your model file is in a subdirectory of

12

LinLagEx_Version_xx

Entering the model into the program, starting with the parameter values,
steady state relationships and simplifying parameter definitions:

%Paramters

T=1369;

xi=60;

f=324.77754855;

beta=0.99;

alpha=0.36;

rho_theta=0.9;

rho_g=0.9;

rho_a=0.9;

u_bar=1;

s_g=0.2;

delta_bar=0.025;

e_bar=fzero(@(x)log(T)-log(T-xi-x*f)-f*x/(T-xi-x*f),1);

pi=e_bar*f/(T-xi-e_bar*f);

eta=(1-beta*(1-delta_bar))*(1-alpha);

phi=(1-beta*(1-delta_bar))/(beta*delta_bar);

delta=delta_bar/(u_bar^phi);

k_y_bar=beta*alpha/(1-beta*(1-delta_bar));

s_i=delta_bar*(k_y_bar);

s_c=1-s_i-s_g;

Naming the column spaces of the model (i.e. give the variables names).

%Variable names

ENDOGENOUS_VARIABLE_NAMES={’Costate’

’Utilization’

’Capital’

’Effort’

’Employment’

’Consumption’

’Output’};

EXOGENOUS_VARIABLE_NAMES={’Productivity’

’Consumption Urge’

’Government Spending’};

Having set parameter values and having named variables, I can enter the
matrices without lagged expectations. Defining the matrices A0, B0, C0, F0, G0,:

13

%Matrices

% L u k e n c y

A_0=[zeros(4,7);

1 -eta 0 eta eta 0 0

zeros(2,7)];

% L u k e n c y

B_0=[0 0 0 0 -alpha 0 0

1 0 0 0 0 1 0

0 -(phi-alpha) 0 (1-alpha) (1-alpha) 0 0

1 alpha 0 -(pi+alpha) -alpha 0 0

-1 0 -eta 0 0 0 0

0 (alpha-s_i*phi) -s_i/delta_bar (1-alpha) (1-alpha) -s_c 0

0 alpha 0 (1-alpha) (1-alpha) 0 -1];

% L u k e n c y

C_0=[zeros(2,7)

0 0 -(1-alpha) 0 0 0 0

0 0 alpha 0 0 0 0

zeros(1,7)

0 0 (alpha+s_i*(1-delta_bar)/delta_bar) 0 0 0 0

0 0 alpha 0 0 0 0];

% A th g

F_0=[zeros(4,3)

eta/(1-alpha) 0 0

zeros(2,3)];

% A th g

G_0=[0 0 0

0 -1 0

1 0 0

1 0 0

0 0 0

1 0 -s_g

1 0 0];

Before the rest of the equations are entered, I need to define the name of the
iteration counter (i.e. the ”N” in the labor-hoarding equation) and set its
maximum value to 50.

%counter=maximum_counter_value

%name of the counter used in subsequent matrices

it_name=’J_1’;

%maximum value of counter: either ’infinity’ or a scalar (without

14

%quotation marks)

it_max_value=50;

Now, I can enter the rest of the matrices as MATLAB ’strings’.

%counter matrices

% L u k e n c y

A_j=’[zeros(7,7)]’;

B_j=’[zeros(7,7)]+(J_1==it_max_value)*[1 alpha 0 -alpha 0 0 0;zeros(6,7)]’;

C_j=’[zeros(7,7)]+(J_1==it_max_value)*[0 0 alpha 0 0 0 0;zeros(6,7)]’;

F_j=’[zeros(7,3)]’;

G_j=’[zeros(7,3)]+(J_1==it_max_value)*[1 0 0;zeros(6,3)]’;

Note the difference in syntax here to the previous example. Unlike the sticky-
information model, the labor-hoarding model has lagged expectations enter-
ing only for the single lag N. Thus, having defined the counter as J 1, if
N=10, then there are no further lagged expectations after t− 10 (hence the
idea “max value”). But all lagged expectations enter the system with zero
coefficients for any lag less than N: the term

(J_1==it_max_value)

B j only when J 1=it max value (here 50). The matrix B j is then given by:

Bj =

{

zeros(7,7), if j 6= 50
[1 alpha 0 -alpha 0 0 0;zeros(6,7)], if j = 50

(28)

As the lagged expectations do not reach back into the infinite past (i.e.
only expectations lagged back N periods show up in the model’s equations),
no limiting matrices are or should be defined,

%limit matrices

%If a counter goes to infinity, please enter the limiting summed matrices

%Alternatively, the limits can be calculated symbolically.

Equation (1) from my paper is now fully defined, defining the exogenous
processes completes eq(2),

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Define exogenous process as a VAR(1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%AR-coefficients

N=[rho_a 0 0

0 rho_theta 0

0 0 rho_g];

%Covariance matrix

Omega=[1,0,0;0,1,0;0,0,1];

15

The default setting for eq (3) is to limit the model to unit-root growth
and I have no reason to permit any other form of growth. Thus, nothing is
entered.

Finally, I set the only real mandatory option:

%Options

PERIOD=4;

HORIZON=60;

Thus defining the model as a quarterly model (needed not only for plots and
the like, but for HP-filtering as well) and setting the horizon of plots to 60
periods (as the plots will otherwise be cut off before labor hoarding is over).

Finally, I tell MATLAB to call linlagex.m, the main program of my rou-
tine:

linlagex;

6 Options

The following lists the current options for linlagex.

it_max_value

tolerance

RUN_IMPULSE

RUN_ANTICIPATED_IMPULSE

RUN_SPECTRAL

RUN_SIMULATION

growth_restriction

PLOT_IMPULSE

PLOT_ANTICIPATED_IMPULSE

PLOT_CORRELATION

PLOT_SIMULATION

HORIZON

IMPULSE_SELECT

ANTICIPATED_PERIOD

ANTICIPATED_HORIZON

ANTICIPATED_SELECT

CORRELATION_SELECT

CORRELATION_HORIZON

grid_size

HP_LAMBDA

solution_method

DISPLAY_STD

16

it max value can be a scalar or a string. Every string is interpreted as
’infinity’. This option sets how far back lagged expectations go. If no value
is specified by the user, the option is set to zero (no lagged expectations).

tolerance corresponds to δ in case 3 (infinite lagged expectations) of the
paper and determines the convergence tolerance of including more lagged
expectations. Default value is 1E-10.

RUN IMPULSE, RUN ANTICIPATED IMPULSE, RUN SPECTRAL, and
RUN SIMULATION allow impulse responses, anticipated impulse responses,
frequency domain moments, and simulations to be run/calculated if they
equal 1. Default is to run all four.

growth restriction sets the upper bound on growth. Default is 1.
PLOT IMPULSE, PLOT ANTICIPATED IMPULSE, PLOT CORRELATION,

and PLOT SIMULATION allow impulse responses, anticipated impulse re-
sponses, cross- and autocorrelations, and simulations to be plotted. Default
is to plot everything.

HORIZON sets the horizon out to which plots for impulse responses will
be displayed. Default is 40.

IMPULSE SELECT selects column spaces (variables) of the model to be
plotted for impulse responses. Default is to plot all variables.

ANTICIPATED PERIOD sets how many periods in advance shocks are
anticipated/announced for calculating anticipated impulses. Default is 8.

ANTICIPATED HORIZON and ANTICIPATED SELECT are the coun-
terparts of HORIZON and IMPULSE SELECT for anticipated impulses.

CORRELATION SELECT selects which variables’ auto- and cross-correlations
are to be calculated. Default is all.

CORRELATION HORIZON sets the horizon of correlation calculations.
Default is 6

grid size sets the number of points to use for the discrete approximation
of the spectra. Default is 64.

HP LAMBDA sets the HP filter coefficient. Default is 1600
(

PERIOD
4

)4

following Ravn and Uhlig (2002).
solution method selects the solution method. If it is equal to ’QZ’, the

QZ method is used. If set to ’AIM’, the AIM method is used. The default
method is QZ.

DISPLAY STD selects whether standard deviations (in spectral and sim-
ulation calculations) should be displayed in the command window.

References

Hamilton, J. D. (1994): Time Series Analysis. Princeton University Press.

17

Klein, P. (2000): “Using the Generalized Schur Form to Solve a Multivari-
ate Linear Rational Expectations Model,” Journal of Economic Dynamics
and Control, 24(10), 1405–1423.

Muth, J. F. (1961): “Rational Expectations and the Theory of Price Move-
ments,” Econometrica, 29(3), 315–335.

Ravn, M. O., and H. Uhlig (2002): “On Adjusting the Hodrick-Prescott
Filter for the Frequency of Observations,” The Review of Economics and
Statistics, 84(2), 371–375.

Sims, C. A. (2001): “Solving Linear Rational Expectations Models,”
Computational Economics, 20(1-2), 1–20.

Taylor, J. B. (1986): “Econometric Approaches to Stabilization Pol-
icy in Stochastic Models of Macroeconomic Fluctuations,” in Handbook
of Econometrics, ed. by Z. Griliches, and M. D. Intriligator, vol. 3 of
Handbook of Econometrics, chap. 34, pp. 1997–2055. Elsevier.

Trabandt, M. (2007): “Sticky Information vs. Sticky Prices: A Horse
Race in a DSGE Framework,” Sveriges Riksbank Working Paper Series
209, Sveriges Riksbank.

Uhlig, H. (1999): “A Toolkit for Analysing Nonlinear Dynamic Stochas-
tic Models Easily,” in Computational Methods for the Study of Dynamic
Economies, ed. by R. Marimon, and A. Scott, chap. 3, pp. 30–61. Oxford
University Press.

Wang, P., and Y. Wen (2006): “Solving Linear Difference Systems with
Lagged Expectations by a Method of Undetermined Coefficients,” Working
Papers 2006-003, Federal Reserve Bank of St. Louis.

18

	Overview
	Overview of the Method
	Using the Software
	Example: Trabandt (2007)
	Example: Wang and Wen (2007) - Burnside Example
	Options

