
Software for RE Analysis

Bennett T. McCallum

August 23, 2001 (Revised 02-17-04)

 This writeup describes a set of Matlab files for formulating, solving, and analyzing

linear rational expectations (RE) models. Some guidance to their installation and use is also

provided. These are all Matlab files of the .m type, which must be used with the standard

Matlab setup. The core file is solvek.m, which is an algorithm for calculating RE solutions,

as described in McCallum (1998, 1999). It is a modified version of a program written by

Paul Klein, whose more detailed analysis may be found in Klein (2000).

 Although solvek.m is the core file, it is not the one that a user will work with. Instead

he will spend much of his time writing or modifying model files, which specify the model to

be solved by solvek.m. In addition, considerable time will be spent analyzing the properties

of the model using files that conduct stochastic simulations and plot impulse response

functions, based on a previously-obtained solution. The current package includes files called

sim33p.m and impo.m for these purposes. A sample model file is included as well, to

provide a starting place for the user. It is called modfile1.m. Some exercises to begin with

are described below.

 The first step is to install the .m files in the proper Matlab folder. This will differ

from one computer to another; the point is that the files must be in the specified path. The

following files should be installed: solvek.m, reorder.m, qzswitch.m, sim33p.m, autocor.m,

impo.m, and modfile1.m. Also, if the computer’s Matlab installation does not include the

Control toolbox, it will be necessary to install dlsim.m and dimpulse.m. If the Control

 1

toolbox is on the computer, it is best not to install these files. It is important that the files are

installed as .m files, not as text (.txt) files. It is suggested that the user print out the files

modfile1.m, solvek.m, impo.m, and sim33p.m and read the introductions.

 To begin, the user should try to run modfile1.m. To do so he simply types

“modfile1” (without the quote marks and without .m) in the Command Window and then hits

enter.1 If the file runs properly, the cursor will move to the next line and give no output. To

see if the model has been solved, the user can then enter “m” in the Command Window. A

matrix, called m by solvek.m, will be printed out. It is the matrix denoted M in the

introduction section of solvek.m. Thus, it is a crucial part of the solution. The other parts are

the matrices N, P, and Q, which may be obtained by entering “n”, “p”, or “q” in the

command window. If these steps are successful, the user should modify modfile1.m by

changing the value of some parameter and then solving the modified model. For example,

the policy-rule parameter mu1 could be changed. After changing it, modfile1.m must be

saved, perhaps under a new name so as to also retain the unmodified file. Then enter the new

name, print out the matrix m and note that its values have changed. More substantial changes

will be discussed below.

 Next the user should plot some impulse response functions. After solving a model,

enter impo in the command window. If all goes well, a set of impulse response functions

will appear on the screen. They are responses to a particular shock, which is specified in an

early line of the impo.m file. Look at that file to see which shock is being used, then change

it and observe the new impulse responses. In this regard, note that the file impo.m includes a

“gtext” statement that causes a string of text to be included on the graph at a location chosen

1 This is one way to run a .m file: simply enter its name, without the suffix, in the Command Window.

 2

 by the user (by positioning a moveable “+” mark with the mouse and then clicking). If this

statement is active (i.e., not commented out of the file), this text must be positioned and

clicked before the user can to proceed normally. The impo.m file is a very simple,

homemade file for generating impulse functions. The user should examine it and learn how

to add or change panels, or change which variables are plotted in the existing panels. It is

possible to extend uses of the file in various ways, such as plotting responses to different

shocks in various panels and even showing plots from two models in each panel.2

 The file sim33p.m runs stochastic simulations of a solved model. The user must have

agreement between it and the model file as to the numbering of the different shocks. Then,

the standard deviations of the innovations to the various (AR(1)) shocks must be entered into

the sim33p.m file, and also the list and names of the endogenous variables whose variance

and covariances are desired. The introductory portion of sim33p.m should be studied

carefully to see how this is done and to learn of the many options regarding what output is

generated.3 Note that the AR coefficients of the shock terms are specified in the model file,

not in sim33p.m.

 After successfully reaching this point, the user will want to begin learning how to

specify models. A first step is to modify the model in modfile1.m in more substantial ways

than merely changing the value of some parameter. In doing this, the user may find it helpful

to refer to Appendix A below, which explains how to generate lagged variables,

expectational variables, etc.4 First, however, he needs to understand what format of the

model is presumed by solvek.m. For this, one should study the introductory writeup lines of

2 One complication is that including a predetermined variable in the list of those whose response is studied
requires that simulated values are taken from the X matrix rather than the Y matrix.
3 Again there are complications if a predetermined variable is in the list to be studied.
4 Indeed, to understand the file modfile1.m, he will probably need to refer to this appendix.

 3

solvek.m. Basically, the format is AEtxt+1 = Bxt + Czt where xt is a vector of endogenous

variables, xt = [yt’ kt’]’, where kt is predetermined and yt is non-predetermined. Also, zt is a

vector of exogenous variables generated by a multivariate AR(1) process. To specify a

model, the user must decide the ordering5 of the variables in xt (and in zt), specify the

dimensions of A, B, and C, and enter their non-zero values. The number of variables in kt

must be correctly specified and also the coefficients of the AR(1) matrix, which is called phi

in the program. The format can, despite appearances, accommodate virtually any

specification of a linear RE model (by defining new variables that are lagged values of

others, etc.).

Both modfile1.m and Appendix A use a programming trick to keep track of the

location of variables in the xt vector. Each variable is given a name that the user can

remember, and then the position number in xt for the variable is called by this name but with

an i attached at its start. For example, the price level might be thought of as p in which case

the statement ip = 3 would make p the third variable in xt. The advantage is that the user then

does not have to remember the index of the variables when entering the model’s equations.

He does this by specifying the non-zero coefficients in the A, B, and C matrices. He will

usually work on one equation at a time so can easily remember the row index to be entered.

Then for the column index, he does not enter a number directly but rather the “name” such as

ip, which has been assigned a number before. Examination of the file modfile1.m should

make this practice understandable.

5 The ordering chosen for the xt variables is irrelevant except that all yt variables (non-predetermined) must
come before the kt (predetermined) variables.

 4

It may be useful to write out, in macroeconomic notation, the structural equations of

the model that are represented by modfile1.m. These are similar to those in the simplest

model reported in McCallum (2001), but are not identical. The equations are:

(IS) yt = b0 + b1[Rt − Et∆pt+1] + Etyt+1 + vt

(AS) ∆pt = 0.5[Et∆pt+1 + ∆pt-1] + α~y t + ut

(MP) Rt = (1 − µ3)[µ1 ∆pt + µ2 Et-1 y~ t] + µ3 Rt-1 + et

(Def) y~ t = yt − ty

(exog) y t = 0.95 y t-1 + εt

with vt, ut, et, and εt being white noise shocks. Parameter values are b0 = 0, b1 = −0.5, α =

 0.02, µ0 = 0, µ1 = 1.99, µ2 = 0, µ3 = 0.8.

References

Klein, Paul, “Using the generalized Schur form to solve a multivariate linear rational expec-

tations model,” Journal of Economic Dynamics and Control 24 (September 2000),

1405-1423.

McCallum, Bennett T., “Solutions to linear rational expectations models: a compact

exposition,” Economics Letters 61 (November 1998), 143-147.

_________________, “Role of the minimal state variable criterion in rational expectations

models,” International Tax and Public Finance 6 (November 1999), 621-639. Also in

International Finance and Financial Crises: Essays in Honor of Robert P. Flood, Jr.,

edited by Peter Isard, Assaf Razin, and Andrew K. Rose, Kluwer Academic

Publishing, 1999.

________________, “Should monetary policy respond strongly to output gaps?” American

 5

 Economic Review Papers and Proceedings 91 (May 2001), 258-262.

Appendix A

 Definition of variables for use in Matlab program solvek.m
 B. T. McCallum, 2-15-99

Notation: Et-jxt+k is denoted ejxk , except that 0 is not entered for j or k. Also, xt-j is
written as xlagj, except that xlag1 is written xlag.

1. Define xt-1 from xt (xlag)

 A(r,ixlag) = 1; and specify that xlag is a predetermined variable
 B(r,ix) = 1;

2. Define Etxt+1 (ex1)

 A(r,ix) = 1;
 B(r,iex1) = 1;

3. Define Et-1xt (e1x) by lagging Etxt+1

 A(r,ie1x) = 1; and specify that e1x is predetermined
 B(r,iex1) = 1;

3a. Define Et-1xt in one step (e1x)

 A(r,ie1x) = 1; e1x predetermined
 A(r,ix) = -1;

4. Define Etxt+2 (ex2)

 A(r,iex1) = 1; this uses definition in 2 and law of iterated expectations
 B(r,iex2) = 1;

5. Define Et-1xt+1 (e1x1) by lagging Etxt+2

 A(r,ie1x1) = 1; and e1x1 predetermined
 B(r,iex2) = 1;

5a. Define Et-1x t+1 in one step (with Etxt+1 already defined)

 A(r,ie1x1) = 1; e1x1 predetermined
 A(r,iex1) = -1;

 6

 7

