%WRM generates a plot of the actual and approximate solution to % % f'(x) + f(x) = 0, f(0) = 1 % % on [0,xmax]. The approximate solution is g(x) where % % g(x) = 1 + a(1) x + a(2) x^2 + ... a(N) x^N. % % One of four possible methods are used (Least squares, Galerkin, % Collocation, or Method of Moments) and the user is queried % about which to use, what xmax to use and the degree of the % approximation. % % Ellen McGrattan, 8-28-96 clc home disp(' THE APPROXIMATION OF f(x), where f''(x)+f(x)=0, f(0)=1') disp(' ------------------------------------------------------') disp(' ') meth= input(['Method? (1=Least sqs., 2=Galerkin, ', ... '3=Collocation, 4=Method of Moments) ']); xmax= input('Maximum x value? '); N = input('Degree of approximation? '); disp(' ') if meth == 1; a = wrml(xmax,N); elseif meth==2; a = wrmg(xmax,N); elseif meth==3; a = wrmc(xmax,N); else a = wrmm(xmax,N); end; x = [0:.1:xmax]'; plot(x,exp(-x),x,( (x*ones(1,N)).^(ones(length(x),1)*[1:N]))*a+1,'--'), ... xlabel('x'), ylabel('f(x)'), grid, ... % legend(' Exact',' Approximate'),