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Abstract

We present a computationally effective method of solving regular
linear dynamic systems based on Schur decomposition. One of the
advantage of presented method is possibility of problem dimension re-
duction. This allows for efficient solution of models with very large set
of endogenous variables and moderate set of state variables. Presented
method allows for considering models with sunspots. We also derive
first differential of matrices describing model dynamics with respect
to model parameters. The toolbox lrem_solve implements methods
described in this paper.
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1 Introduction
We present a method of solving regular linear rational expecta-

tions models in general form based on generalized Schur decomposi-
tion. Such a models arises naturally, using the perturbation technique
of solving dynamic economies.

Presented method is rather standard. See e.g. [2]. There are a few
packages implementing this technique. This methods however differs
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substantially from existing solutions techniques. The most important
differences is lack of more detailed structure of the models, we do not
analyze predefined state variables explicitly. In many cases determin-
ing state variables is complicated, especially in case of large models.
Additionally, existing techniques generally breaks down is the set of
predefined state variables is lower, than dimension of states in the
models. Such a case arises naturally in models with sunspots. Analyz-
ing unstructurized models avoids this difficulties and allows easily for
considering sunspots. We present however methods of reformulating
model dynamics in terms of predefined states.

Analyzing structurized models allows for more efficient solutions in
case of analyzing explicitly exogenous state variables. However compu-
tational advantage of analyzing such models in not high but introduces
many difficulties. Solving models with predefined exogenous states re-
quires solving generalized Sylvester equations. Current implementa-
tions of methods of solving such problems work only if there is exactly
one solution to this equation. However generally this is not the case.

Presented technique delivers all solutions to the model or shows
that there is no solution.

In order to allow analyzing large dynamic models we present a tech-
nique of reduction the problem dimension in case of very large number
of endogenous variables but small or moderate number of state vari-
ables. The lrem_solve does not deliver completely this functionality,
because such reduction technique is the most efficient in case of us-
ing available linear solvers for sparse matrices. The toolbox does not
consider sparse systems.

In many cases solving rational expectations models is not the last
step and they require parameter estimation, which is extremely costly.
In order to reduce this cost we present how to calculate differentials of
solution with respect to model parameters. The lrem_solve toolbox
delivers efficient implementation of presented algorithm.

This paper is organized as follows: section 2 presents the problem,
section 3 analyzes a matrix equation determining solution to determin-
istic part of the models, section 4 analyzes stochastic part of the model,
in section 5 we presents the method of reducing problem dimension,
section 6 delivers differentials of solution with respect to additional
parameters, in section 7 we present a method of expressing model dy-
namics in terms of predefined set of state variables.
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2 The Problem
Let us consider the following linear system

0 = Ayt + Byt+1 + CEtyt+1 + V εt + Wεt+1 (1)

where y ∈ Rm is a vector of control variables, εt+1 ∈ Rs is a vector of
i.i.d. random variables normally distributed with zero mean.

We are looking for a solution in the form

yt = Rut + S1εt + S2ωt

ut = Put−1 + Q1εt + Q2ωt
(2)

where u ∈ Rk is some vector of state variables and ωt ∈ Rr is an
vector of i.i.d. random variable with zero mean independent on εt.
Additionally we assume the following growth restriction:

Assumption 2.1. We are looking for linear solutions to the system
(1) such that the following growth restriction holds

lim
t→∞E0

{
ξtyt

}
= 0 (3)

for any u0.

Substituting (2) to (1) yields

0 = (AR + (B + C)RP )ut + ASυt + B(RQ + S)υt+1

+ V εt + Wεt+1

this equation must be fulfilled for all ut, εt, ωt, hence

0 = AR + (B + C)RP (4)
0 = AS1 + V 0 = AS2 (5)
0 = B(RQ1 + S1) + W 0 = B(RQ2 + S2) (6)

The transversality condition implies that

lim
t→∞ ξtRP t = 0

We restrict ourselves only to regular systems, such that the matrix
pair (A,B + C) is regular, i.e. matrices A, B + C are square and
det(αA− β(B + C)) 6= 0 for some, possibly complex, α, β.
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3 The matrix equation AR = BRP

In this section we briefly present a method of solving the matrix
equation AR = BRP for regular matrix pair (A,B). See [1] for further
details.

In this section we are looking for matrices R and P , such that for
a given square matrices A and B the equation AU = BUΣ holds and
the transversality condition limt→∞ ξtRP t = 0 is satisfied.

Let us assume that a matrix pair (A,B) is regular1. Let us consider
generalized Schur decomposition of the matrix pair (A,B)

V ′AU = TA V ′BU = TB

where matrices U and V are orthogonal, the matrix TA is quasi-upper
triangular, and the matrix TB is upper triangular. Such a decompo-
sition always exists. Let λA

i , λB
i are i-th eigenvalues of TA and TB

respectively. Let λi = λA
i /λB

i and let λ is a set of all distinct finite
eigenvalues λi. Let q is a size of the set λ.

Let us sort eigenvalues of TA and TB is such a way that all eigen-
values λi, such that |ξλi| < 1 appears in left upper block of TA and
TB. Then

[
V1 V2

] [
RA TA

12

0 TA
22

]
= A [

U1 U2

]

[
V1 V2

] [
RB TB

12

0 TB
22

]
= B [

U1 U2

]

where RA is quasi-upper triangular, RB is upper-triangular, both ma-
trices have the same size. This implies

AU1 = V1RA BU1 = V1RB (7)

By assumption, the matrix RB is invertible. Thus,

AU1 = BU1(RB)−1RA

Then we can take P = (RB)−1RA and R = U1. If matrices R, P
satisfy the equation AR = BRP , then matrices R̃ = RΞ, P̃ = Ξ−1PΞ
also satisfy this equation for any invertible matrix Ξ.

Theorem 3.1. kerBR = 0

Proof. Let x ∈ kerB. Then 0 = BRx = V1RBx. V1 has full column
rank, hence RBx = 0. The matrix RB is invertible, thus x = 0.

1This assumption guarantees that the Schur decomposition is numerically stable. In
opposite case a matrix pair (A,B) has infinitely many eigenvalues. Small perturbations of
(A,B) may drastically change matrices TA and TB .
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4 The stochastic part
Let us consider a matrix equation AX +B = 0 for any matrices A,

B. We are going to find all solutions to this equation. Let U is such a
matrix2 that

U ′A =
[

A1

0

]

where A1 is a matrix with full rank with q1 rows. Let U ′B = col(B1, B2)
be the corresponding partition of the matrix U ′B. Then

[
A1

0

]
X = −

[
B1

B2

]

If the matrix B2 is not a zero matrix, then there is no solution to the
equation AX + B = 0. Assume that this is not the case. We have

A1X + B1 = 0;

If A1 is a square matrix then A1 is invertible and X = A−1
1 B1 is the

only solution. Let us assume that A1 is not square and V is such a
matrix that

A1V =
[

A2 0
]

where A2 is a square matrix with q1 rows. Then
[

A2 0
]
V ′X + B1 = 0;

Let V ′X = col(X1, X2) be a partition of the matrix V ′X such that
dim1 X1 = q1. Then

A2X1 + B1 = 0

and X2 is any matrix. The matrix A2 is invertible thus

X1 = −A−1
2 B1

and

X = V

[ −A−1
2 B1

X2

]
= −V1A

−1
2 B1 + V2X2

2To obtain the matrix U one can consider qr decomposition of the matrix A. However
to obtain correct estimation of rank of the matrix A and consequently to select properly
nonzero part A1, the smallest nonzero singular value of the matrix A must be much higher
than machine precision. If this is not the case, then more reliable methods are required,
e.g. svd decomposition or rank revealing qr decomposition.

5



where X2 is any matrix with appropriate size, and V = [V1, V2].
Let us consider equations (5-6). Let

S1 = S̃1 + Φ1Y1

S2 = Φ1Y2

are all solutions to equation AS1 + V = 0 and AS2 = 0, where Y1, Y2

are any matrices with appropriate size, assuming that solutions exist.
Then

0 = B
[

R Ψ1

] [
Q1

Y1

]
+ BS̃1 + W ≡ BR̃Q̃1 + W̃ (8)

0 = B
[

R Ψ1

] [
Q2

Y2

]
≡ BR̃Q̃2 (9)

Applying again the procedure described earlier we obtain that if
solutions to (8-9) exist then they take the form

Q̃1 = Ξ1 + Ψ1Z1 Q̃2 = Ψ1Z2

where Z1, Z2 are any matrices with appropriate size. Hence,

Q1 = Ξ1
1 + Ψ1

1Z1 Q2 = Ψ1
1Z2

Y1 = Ξ1
2 + Ψ1

2Z1 Y2 = Ψ1
2Z2

where Ψ1 = col(Ψ1
2,Ψ

1
2), Ξ1 = col(Ξ1

2, Ξ
1
2) are appropriate partition of

matrices Ψ1 and Ξ1. Finally

Q1 = Ξ1
1 + Ψ1

1Z1 Q2 = Ψ1
1Z2

S1 = S̃1 + Φ1Ξ1
2 + Φ1Ψ1

2Z1 S2 = Φ1Ψ1
2Z2

In this way we obtain all solutions to (5-6).

5 Problem reduction
Usually the matrix B + C has large null space especially in case of

large models. We can use this property to decrease computation cost
of solving the problem (4). Let Q is an orthogonal matrix such that

Q′(B + C) =
[

B̃1

0

]
≡ B̃

and let Q′A = col(Ã1, Ã2) ≡ Ã be corresponding partition of the
matrix Q′A. Then we have

Ã1R + B̃1RP = 0

Ã2R = 0
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Hence R ∈ ker Ã2, and there exists a T such that R = MT , where
M = null Ã2, and

Ã1MT + B̃1MTP = 0 (10)

Theorem 5.1. If the matrix pair (A,B +C) is regular, then matrices
Ã1M and B̃1M are square and the matrix pair (Ã1M, B̃1M) is regular.

Proof. Let Γ = [null Ã2, range Ã2]. Matrix Γ is orthogonal. Let us
consider matrices ÃΓ and B̃Γ. We have

ÃΓ =
[

Ã11 Ã12

0 Ã22

]
, B̃Γ =

[
B̃11 B̃12

0 0

]

where Ã11 and B̃11 are square matrices with n1 = Ã11 rows. Let
α, β ∈ C. We have |det(αA − β(B + C))| = |det(αÃ − βB̃)| =
| det(αÃΓ− βB̃Γ)| = | det(αÃ11 − βB̃11||det(αÃ22)|.

Assume that rank Ã2 < n − n1. Then rankM = m > n1. Then,
by the construction of the matrix M , the first m − n1 > 0 columns
of the matrix Ã22 contain only zero elements. Hence, | det(Ã22)| = 0,
and the matrix pair (A,B + C) is not regular. On the other hand
rank Ã2 ≤ n− n1, because the matrix Ã2 contains n− n1 rows. Thus
rank Ã2 = n − n1 and rankM = n1. The n × k matrix M has full
column rank, thus k = n1 and matrices Ã1M , B̃1M are square.

If the matrix pair (A,B + C) is regular then there exist α, β ∈ C
such that | det(αA−β(B+C))| 6= 0. Then also |det(αÃ11−βB̃11| 6= 0
and the matrix pair (Ã1M, B̃1M) is regular.

In this way we have proved that instead solving the problem (4)
we can solve the problem (10).

6 Models dependent on parameters
Let us assume that matrices describing the model (1) depend on

additional scalar parameter, θ. Then equations (4-6) take the form

0 = A(θ)R(θ) + (B(θ) + C(θ))R(θ)P (θ)
0 = A(θ)S1(θ) + V (θ)
0 = A(θ)S2(θ)
0 = B(θ)(R(θ)Q1(θ) + S1(θ)) + W (θ)
0 = B(θ)(R(θ)Q2(θ) + S2(θ))

(11)

and the transversality condition takes the form

lim
t→∞ ξ(θ)tR(θ)P (θ)t = 0
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Let for the basic model θ = 0. Let us assume that model matrices are
differentiable with respect to θ, equation (4) has solutions R and P
in some neighborhood of θ = 0 and these solutions are differentiable
with respect to θ3. Then equation (14) also has solution. We are going
to expand matrices R, P , S1, S2, Q1, Q2 in asymptotic series around
θ = 0. We already have the zero order terms.

Let R̄ = R(0), P̄ = P (0), S̄1 = S1(0), S̄2 = S2(0), Q̄1 = Q1(0),
Q̄2 = Q2(0) solve (11). Differentiating (11) with respect to θ around
θ = 0 yields

0 = A′(θ)R̄ + (B′(θ) + C ′(θ))R̄P̄ + AR′(θ) + (B + C)R′(θ)P̄
+ (B + C)R̄P ′(θ)

(12)

and

0 = A′(θ)S̄1 + V ′(θ) + AS′1(θ)
0 = A′(θ)S̄2 + AS′2(θ)
0 = B′(θ)(R̄Q̄1 + S̄1) + W ′(θ) + BR′(θ)Q̄1 + B(R̄Q′

1(θ) + S′1(θ))
0 = B′(θ)(R̄Q̄2 + S̄2) + BR′(θ)Q̄2 + B(R̄Q′

2(θ) + S′2(θ))
(13)

where A = A(0), B = B(0), C = C(0), V = V (0), W = W (0).
Equations (13) can be solved exactly in the same way as equations

(5-6) using methods from the section 44.
Equation (12) takes the form

0 = Γ1 + AX + (B + C)XP̄ + (B + C)R̄Y (14)

where Γ1 = A′(θ)R̄ + (B′(θ) + C ′(θ))R̄P̄ , X = R′(θ), and Y = P ′(θ),
with unknown matrices X and Y . There are many solutions to (14).
Observe that if X is a solution to (14), then X + αR̄ is also a solution
for any α. To avoid this indeterminacy we can utilize the fact, that if
R(θ) is a solution to (4), then R(θ)U is also a solution for any invertible
matrix U . Let M(θ)′ spans the range of R(θ). Then M(θ)′R(θ) has
full row rank. Let us assume that in some neighborhood of θ = 0 the
matrix M(0)′R(θ) also has full row rank. Then there exists an invert-
ible matrix U(θ) such that M(0)′R(θ)U(θ) = I and as a new solution
we can take R̃(θ) = R(θ)U(θ)U−1(0). Then R̃(0) = R̄, R̃′(0) = 0 and
we can assume that M(0)′X = 0. Hence,

X = KX̃

3Generally this conditions need not be fulfilled. E.g. a model 0 = yt+θεt+1 has solution
only for θ = 0, a model θ = Etyt+1 may have solution yt = θ + σ(θ)εt, where the function
σ(θ) is not differentiable.

4Generally there may be infinitely many solutions to (13), for example in case of a
regular model θ = Etyt+1, with one of the solution yt = θ + αθεt for any α.
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where K spans the null space of R̄′. Equation (14) now takes the form

0 = Γ1 + AKX̃ + (B + C)KX̃P̄ + (B + C)R̄Y

We are going to express the matrix Y in terms of X̃. Let matrices
N , M span the null space and the range of (B + C)′. Then

0 = N ′Γ1 + N ′AKX̃ (15)

0 = M ′Γ1 + M ′AKX̃ + M ′(B + C)KX̃P̄ + M ′(B + C)R̄Y (16)

Theorem 6.1. If the matrix pair (A,B+C) is regular, then ker(N ′AK)′ =
0.

Proof. Let Γ = col(N ′,M ′). Then Γ is square orthogonal matrix and

ΓA =
[

N ′A
Ã2

]
, Γ(B + C) =

[
0

B̃2

]

Let kerN ′A 6= 0. Let N̄ , M̄ span null space and range of (N ′A)′ and
let

∆ =




N̄ ′ 0
M̄ ′ 0
0 I




Then ∆ is a square orthogonal matrix and

∆ΓA =
[

0
Ā2

]
, ∆Γ(B + C) =

[
0

B̃2

]

Let α, beta are any complex scalars. Then det(αA − β(B + C)) =
det(α∆ΓαA− β∆Γβ(B + C)) = 0 and the matrix pair (A,B + C) is
not regular. Thus, ker(N ′A)′ = 0.

Let x ∈ ker(N ′AK)′. Then 0 = K ′(N ′A)′x and x ∈ ker(N ′A)′,
because kerK = 0 by construction. Hence x = 0.

Theorem 6.1 implies that the equation (15) always has at least one
solution. Let

X̃ = G + HZ

for appropriate matrices G, H and any matrix Z.
Now the equation (16) takes the form

0 = Γ2 + M ′AKHZ + M ′(B + C)KHZP̄ + M ′(B + C)R̄Y (17)
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where Γ2 = M ′Γ1 + M ′AKG + M ′(B + C)KGP̄ with unknown Y
and Z. Again let matrices Ñ , M̃ span the null space and the range of
(M ′(B + C)R̄)′. Then

0 = Ñ ′Γ2 + Ñ ′M ′AKHZ + Ñ ′M ′(B + C)KHZP̄ (18)

and

0 = M̃ ′Γ2 + M̃ ′M ′AKHZ + M̃ ′M ′(B + C)KHZP̄ + M̃ ′M ′(B + C)R̄Y
(19)

Theorem 6.2. If the matrix pair (A,B + C) is regular, then for any
Z the equation (19) has exactly one solution.

Proof. By the construction the matrix M̃ ′M ′(B + C)R̄ has full row
rank, and the equation (19) has at least one solution for any Z. As-
sume that there exist a second solution Ỹ 6= Y . Then M̃ ′M ′(B +
C)R̄(Y − Ỹ ) = 0. By the construction of the matrix M̃ this implies
that M̃ ′M ′(B + C)R̄(Y − Ỹ ) = 0. The matrix M̃ ′ spans range of
M ′(B + C)R̄, hence M ′(B + C)R̄(Y − Ỹ ) = 0. The matrix M ′ spans
range of B+C, hence (B+C)R̄(Y −Ỹ ) = 0. This contradicts the theo-
rem 3.1. Regularity condition is required, because only in this case we
can solve the model (1) using the generalized Schur decomposition.

By the theorem 6.2 the matrix M̃ ′M ′(B + C)R̄ is square and in-
vertible.

Theorem 6.3. If the matrix pair (A,B +C) is regular, then matrices
Ñ ′M ′AKH and Ñ ′M ′(B + C)KH are square.

Proof. We need to prove that dim1 Ñ ′ = dim2 H what is equivalent
to dim2 null(R̄′(B + C)′M) = dim2 nullN ′AK. By the theorem 6.2
the matrix M̃ ′M ′(B + C)R̄ is square and invertible, hence the matrix
Q = R̄′(B + C)′M has full row rank and dim2 null(R̄′(B + C)′M) =
dim2 Q− dim1 Q = dim2 M − dim2 R̄.

To prove that also nullN ′AK has full rank we consider the Schur
decomposition of the matrix pair (A,B + C).

[
V1 V2

] [
RA TA

12

0 TA
22

]
= A

[
U1 U2

]

[
V1 V2

] [
RB TB

12

0 TB
22

]
= (B + C)

[
U1 U2

] (20)

where matrices U = [U1, U2], V = [V1, V2] are orthogonal, RA is quasi-
upper triangular, RB is upper-triangular and invertable, both matrices
have the same size and eigenvalues are such selected, that the growth
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restriction holds. Then R = U1Ξ for some invertible matrix Ξ (see
section 3). In this case K = nullR′ = U2. Hence

[
V1 V2

] [
TA

12

TA
22

]
= AK

[
V1 V2

] [
TB

12

TB
22

]
= (B + C)K

Let N spans the null space of (B + C)′. Because the matrix RB is
invertible, thus N = V2Ñ . In this way we have

TA
22 = V ′

2AK TB
22 = V ′

2(B + C)K

and further

Ñ ′TA
22 = N ′AK Ñ ′TB

22 = 0

Regularity of the matrix pair (A,B + C) requires that Ñ ′TA
22 has full

row rank. This ends proof that S = N ′AK has full row rank and
dim2 null(N ′AK) = dim2 S−dim1 S = dim2 K −dim2 N . The second
relation results from observation that R̄ has full column rank.

Finally we have following relations: dim2 N + dim2 M = dim2 B
and dim2 R̄ + dim2 K = dim2 B. Hence dim2 M − dim2 R̄ = dim2 K −
dim2 N and dim1 Ñ ′ = dim2 H.

Let us solve now the equation (18). We can solve this equation
using vectorization technique obtaining

0 = vec(Ñ ′Γ2) + (I ⊗ Ñ ′M ′AKH + (P̄ )′ ⊗ Ñ ′M ′(B + C)KH) vec(Z)

This equation can be solved using methods from the section 4, which
also show whether there is any solution.

However by the theorem 6.3 we know that equation (18) is the
generalized Sylvester equation, which can be solved more efficiently
especially in case of large problems. Generally the equation (18) may
have zero, one, or infinitely many solutions.

For small θ the modified transversality implies choosing the same
eigenvalues of the matrix pair (A(θ), B(θ)) as in case θ = 0.

Now we can expressed matrices describing solution to the model
(4) as

R(θ) ∼ R̄ + θR′(θ) P (θ) ∼ P̄ + θP ′(θ)
Si(θ) ∼ S̄i + θS′i(θ) Qi(θ) ∼ Q̄i + θQ′

i(θ)

for θ → 0 and i = 1, 2. Such a result is very useful in estimating linear
model. When there are many parameters in the model then we can
repeat the procedure for all parameters.
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7 Predefined state variables
Usually we would like to represent model dynamics in terms of

predefined state variables. Assume that we interpret some endogenous
variables as a state variables, xt

xt = Kyt

which in time t = 0 may take any values. In generality model dynamics
does not depends only on these state variables. They may appear
additional state variables representing sunspots. On the other hand
we would like not to introduce predefined state variables too early,
because in some cases it is difficult to identify variables, which values
are predetermined in given period and can take any value in period
t = 0.

We have

xt = KRut

By the assumption, all values xt are possible, hence KR must have
full row rank. Let V is an orthogonal matrix such that KR = TV ′,
where T = [T̃ , 0] and T̃ is an invertible matrix. Since KR has full row
rank, such a matrix V exists. Then

T−1xt = V ′
1ut

where V = col(V1, V2) is partition of the matrix corresponding to par-
tition of the matrix T . Let ut = V ũt. Then

T̃−1xt = V ′
1V ũt = ũ1

t

where ũt = [ũ1
t , ũ

2
t ]
′ is partition of the vector ũt corresponding to par-

tition of matrices T and V . On the other hand we have

ũt = V ′PV ũt−1 + V ′Qυt ≡ P̃ ũt−1 + Q̃υt

hence

xt = T̃ P̃11T̃
−1xt−1 + T̃ P̃12ũ

2
t−1 + T̃ Q̃1υt

ũ2
t = P̃21T̃

−1xt−1 + P̃22ũ
2
t−1 + Q̃2υt

where Q̃ = col(Q̃1, Q̃2) is partition of the matrix Q̃ corresponding to
partition of the matrix T and

[
xt

ũ2
t

]
=

[
T̃ P̃11T̃

−1 T̃ P̃12

P̃21T̃
−1 P̃22

] [
xt−1

ũ2
t−1

]
+

[
T̃ Q̃1

Q̃2

]
υt
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We have also

yt = Rut + Sυt = RV

[
ũ1

t

ũ2
t

]
+ Sυt = R

[
V1 V2

] [
T̃−1xt

ũ2
t

]
+ Sυt

= R
[

V1T̃
−1 V2

] [
xt

ũ2
t

]
+ Sυt

We do not calculate expansion of matrices describing solution to the
model depending on additional parameters with predefined variables
as state variables, because such a representation of model dynamics is
not useful in estimation of model parameters.

8 The Toolbox
Lrem_solve Toolbox implements in Matlab presented algorithms.

This toolbox is available from www.mathworks.com site.

9 Conclusions
We presented algorithm of analyzing general set of linear dynamic

rational expectations models. We concentrated only on regular models.
This excludes models with larger set of indeterminacy, e.g. models with
many capital assets. Solving such models would require a method of
finding ordered GUPTRI decomposition, which to our knowledge is
not available yet. See [1] for further details.
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