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1. Introduction

Most of the issues that I address here can be found in a simple univariate example,

which I adapt from Broze, Gourieroux and Szafarz (1985). Consider the following

equation:

|�|n� ' @�| n �|c (1)

where |�|n� is the expectation of �|n� conditional on information available at time

|. This information set includes all current and lagged values of �| and �|, but no

future values. i�|j is a first-order autoregression (AR(1)):

�| '
�

�� 4u
D|c (2)

with iD|j a covariance stationary martingale difference sequence (MDS), that is,

|D|n� ' f, and m4m 	 �. u denotes the lag operator.

To proceed, rewrite equation (1) as

�|n� ' @�| n �| n 0|n�c (3)

0|n� � �|n� �| �|n�� (4)

Clearly i0|j is an MDS; for convenience, assume that i0|j is also covariance

stationary. Without any restrictions, there are as many solutions to equation (3) as

there are processes i0|j.

Let’s restrict ourselves to solutionsi�|j that satisfy

t�T
�:f

��
|�

2
|n�

�� 	 4c ;� : f� (5)

This rules out explosive conditional means and/or variances. Whenm@m 	 �,

�|n� '
�

�� @u
E�| n 0|n�� n @f@

|n�c (6)

for any constant@f and covariance stationary MDSi0|j, so that there are still infi-

nitely many solutions. Assuming that the sequence begins with�f only pins down

@f; similarly, if we restrict ourselves to covariance stationary solutions, we only need
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@f ' f.

I will treat the knife-edge case of m@m ' � as the limit of the case where m@m ' �.

Now let S ' �*@, so that �| ' �S�| n S|�|n�. When m@m is greater than � the stable

solution can be found by solving (1) ’’forward:’’

�| ' �S
"[
�'f

S� |�|n� (7)

Given thati�|j is an AR(1) process, (7) becomes

�| ' _ Eu� D|c (8)

_ Eu� '
�S

�� S4

�

�� 4u
c (9)

so that:

0|n� '
�S

�� S4
D|n�� (10)

It should not be surprising that (7) is the unique stable solution whenm@m : �;

Gourieroux, Laffont and Monfort (1982) show this formally. Note that whenm@m : �,

�| and0| must lie in the space spanned by current and lagged values ofD|, which I

will denote asMD E|�, but whenm@m 	 �, there are many spaces within which0| can

reside, even if@f ' f.

Finally, consider what happens if we fix�f. Whenm@m : �, _ Eu� Df will equal an

arbitrary�f only by chance; when there are unstable roots, there will be no solution

that satisfies both a stability condition and an arbitrary initial condition. This con-

trasts with the case wherem@m 	 �; there we found that there were infinitely many

stable solutions compatible with the initial condition.

2. The General Multivariate Case and its Solution

2.1 The Canonical Problem

Nearly all the intuition of the univariate example extends to the general multivariate
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case. My approach most closely follows that of Klein (1998) and Sims (1997), both

of which build off the work of Blanchard and Kahn (1980). I also incorporate ele-

ments of the MDS approaches used by Broze, Gourieroux and Szafarz (1985, 1995),

Farmer (1993) and Farmer and Guo (1994), as well as insights from King, Plosser

and Rebelo (1987).2 For the most part, my approach will be pragmatic and focused;

readers interested in generality and rigor are directed to the works listed above.

Consider the following system:

�f| |n� ' �� |c | ' fc �c 2��� (11)

0|n� � + d |n� �|  |n�o }��e?c | ' fc �c 2��� (12)

0f � + f }��e?c (13)

where:  | is an E? � �� random vector; �f and �� are E? � ?� matrices; i0|n�j"|'f

is a covariance stationary MDS; and + is a full-rank E?2 � ?� matrix, with ?2 � ?.

My goal is to find the stable—in the sense of equation (5)—covariance stationary

processesi |n�j"|'f that satisfy equations (11) through (13).3 This will consist in

large part in finding the process for:

i |n� �  |n� �|  |n�� (14)

As the previous section suggests,i |n� need not always lie inM" E|�.

My approach has four steps:

1. Transform the system given by equation (11), ignoring for the moment the side
constraints given by equations (12) and (13).

2. Find the set of solutions to the (unrestricted) transformed system.

2Extensions, alternative approaches, and useful references also appear in Anderson et al. (1995),
Binder and Pesaran (1995, 1997), Hamilton and Whiteman (1985), King and Watson (1997a, 1997b)
and Zadrozny (1997).
�Strictly speaking, our solution will not be covariance stationary unless the covariance matrix of
0f is suitably restricted.
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3. ‘‘Reverse-transform’’ this solution into the format of the original system.

4. Working in the original format, impose the side constraints.

2.2 Transforming the System

The first step in solving the system is to find the real generalized Schur (or QZ)

decomposition of�f and��.4 The real decomposition, however, is most easily

understood in contrast to the complex QZ decomposition, and so I discuss that first.

The complex QZ decomposition consists ofE?� ?� matrices�" and�~ such that

�"�f
�~ ' �5 �r ,J�eo |o�@?}�,@oc (15)

�"��
�~ ' �A �r ,J�eo |o�@?}�,@o� (16)

In addition,�" and�~ areunitary, in that

�"A �" ' �~A�~ ' W?c (17)

where ‘‘A ’’ denotes transposition with complex conjugation. Letb� denote the ratio

of the�th diagonal elements of�5 and�A, namely

b� �
�|��
�r��

� (18)

Theseb� are called thegeneralized eigenvalues of the matrix pencil b�f � ��,

and if �f is the identity matrix, theib�j are just the eigenvalues of��.5 When

�f is singular, some of its diagonal elements equal zero, in which case we treat the

relevantb� as infinite. It turns out that there exists a complex QZ decomposition for

any ordering of theib�j.
As long as the generalized eigenvalues are ordered so that members of conjugal

pairs appear consecutively, every complex QZ decomposition of our system is ac-

eSee Anderson et al. (1995) and Klein (1998) for more discussion of the QZ decomposition. In
brief, the QZ decomposition is preferable to the more familiar eigenvalue-eigenvector decomposi-
tion because: (1) the QZ decomposition exists more generally, including when Df is singular; and
(2) the QZ decomposition is stabler numerically.
DTechnically, the generalized eigenvalues are i�� = mD� � ��Dfm @ 3j.
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companied by a real one.6 In particular, there are real unitary matrices " and ~ such

that

"�f~ ' 5 �r hi@*��@,�e_ @?_ ,J�eo K,JS& |o�@?}�,@oc (19)

"��~ ' A �r hi@*��@,�e_ @?_ ,J�eo K,JS& |o�@?}�,@o� (20)

Let 6� denote the number of generalized eigenvalues that lie outside the unit

circle—that is, are unstable—and let62 ' ?�6� denote the number that lie on or

within—that is, are stable.7 Let’s assume that

62 � ?2� (21)

In general, systems with62 	 ?2 have no solution.

The next step is to create the transformed variables:�
^|
)|

�
' ~A |c (22)

where^| is E6� � �� and)| is E62 � ��. It follows that pre-multiplying both sides of

equation (11) by" yields:

5

�
|^|n�

|)|n�

�
' A

�
^|
)|

�
c (23)

Since~A and" have full rank, the original and transformed systems have the same

stability properties.

Now let’s assume that5 andA are ordered so that the6� unstable generalized

eigenvalues appear first, so that upon partitioning:�
5�� f
52� 522

��
|^|n�

|)|n�

�
'

�
A�� f
A2� A22

��
^|
)|

�
� (24)

It is this lower triangular system that we will solve first.

SThis also requires Df and D� to be real-valued, as was assumed above.
.In the analysis below, I will treat the generalized eigenvalues that lie on the unit circle as limiting
cases of the generalized eigenvalues that lie strictly inside.
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2.3 Solving the Transformed System

As one might suspect, the matrix pencils b5�� � A��c � ' �c 2c inherit the stability

properties of the generalized eigenvalues used to partition 5 and A. This means that

the upper block of equations in (24) will explode unless it is solved forward:

^| ' A3�
��5�� |^|n�c (25)

so that

^| ' f� (26)

In contrast, the lower block of equations is stable, in that ,�6
�<"

�
53�
22A22

��
' f.8

In the absence of any additional constraints, this implies that the lower block of

equations can support any solution of the form:

)| '
|3�[
�'f

�
53�
22A22

��
i)|3� n

�
53�
22A22

�|
)fc (27)

where
�
i)|

�
is an arbitrary covariance stationary MDS, and )f is E62 � ��.

Putting it all together, we can rewrite equation (24) as�
^|n�

)|n�

�
' ,

�
^|
)|

�
n

�
f

i)|n�

�
c (28)

, �
�
f f

f 53�
22A22

�
c (29)

with ^f ' f. Since all of the eigenvalues of the matrix , lie inside the unit circle,q�
^A| )A|

�Ar
is a covariance stationary VAR(1).

2.4 Recovering the Original System

To recover the original system, multiply both sides of equation (28) by ~ to get

 |n� ' 6 | n
�
~� ~2

�� f
i)|n�

�
c

' 6 | n ~2i
)
|n�c

(30)

6 � ~,~Ac (31)

HUnder regularity conditions, W�� and V22 are always invertible. See Klein (1998) for details.
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where ~� and ~2 are a partition of ~, so that ~2 is E?�62�. We recover initial values

in a similar manner:

 f ' ~2)f�

In the special case where �f ' W?, we also have

 |n� ' �� | n ~2i
)
|n�� (32)

To see that (30) and (32) are equivalent, first note that when �f ' W?c we can con-

struct a QZ decomposition with " ' ~A, so that9

�� ' ~A~Ac (33)

5 ' W?� (34)

Using these results, our work in section 2.3 implies that10

�� | ' ~A

�
^|
)|

�

' ~,

�
f
)|

�
' 6 |�

(35)

2.5 Imposing the Side Constraints

Until now, we have done nothing to pin down i)| or )f. To do this, we first impose

the side constraints given by equations (12) and (13).11 In particular, equations (12)

and (30) imply

+ d |n� �|  |n�o ' ~22i
)
|n� ' 0|n�c (36)

bEquation (33) is also known as the real Schur decomposition of D�. For more discussion, see
Anderson et al. (1996).
�fWhen Df @ L?, one can, with the appropriate substitutes for ] and W, apply to the work in sec-
tion 2.3 the more familiar eigenvalue-eigenvector decomposition utilized by Blanchard and Kahn
(1980).
��Note that each of the side constraints is a stochastic restriction, expressed in terms of stochastic
processes. This means, for example, that equation (12) gives q2 +q2 . 4, @5 of the p2 +p2 . 4, @5
non-zero elements of h)

|
’s covariance matrix.
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~22 � +~2� (37)

The solution to (36) can written as

i)| ' i)M| n ~�22_|c (38)

where i)M| is a basic solution to (36), ~�22 is an E62 �6�� basis for the null space of

~22, and i_|j is an E6� � �� covariance stationary MDS. Noting that ~22 is E?2 �
62�, I will assume that it is of rank ?2, so that 6� ' 62 � ?2.12 Farmer (1993)

makes a similar decomposition under a slightly different framework. Borrowing his

terminology, one can interpret ~�22_| as a vector of ‘‘sunspots.’’

The general approach for findingi)M| is to set6� of its elements tof, and solve

for the remaining?2; see Gill, Murray and Wright (1991) for more details. It turns

out thati)M| can be written as

i)M| ' #0|c (39)

with the elements of theE62 � ?2� matrix# complicated functions of the elements

of ~22. While the choice of the6� zero elements—and thus#—is rarely unique,

once they have been selected,i)M| is uniquely determined through#. In practice,

I set# and~�22 with functions provided in GAUSS, and keep them constant over

time.13 While simple, this approach is somewhat arbitrary: since any two basic

solutions differ only by an element of~22’s null space, for a given processi0|j
there are usually many pairs of processesi_|j and matrices# that can generate a

�2If u @ rank+]22, ? q2, equation (36) will have a solution only if 0|n� @ ]M
22
/|n�, where ]M

22

is a basis for the column space of ]22 and i/|j is an +u� 4, covariance stationary MDS. As Sims
(1997) points out, this immediately implies that the covariance matrix of 0|n� is singular, which
violates the presumption that i0|n�j can be chosen arbitrarily.
��In setting G, I generally use the QR factorization. In particular, ]22S @ aT

�
U� U2

�
, where:

S is an +p2 �p2, (unitary) permutation matrix; aT is +q2 �q2, and unitary; U� is +q2 �q2, and

nonsingular; and U2 is +q2�p�,. With the QR factorization, G @ S

�
U3�
�

aTA

3

�
> with the zero

matrix of dimension +p� � q2,. (A derivation appears in Gill, Murray and Wright (1991).) All of
the relevant matrices are returned by the GAUSS function QQRE.
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given
�
i)|

�
. On the other hand, as long as i_|j is selected as the solution to some

optimization problem, the choice of # and ~�22 amounts to nothing more than a

change of basis—I return to this point in Section 3.1 below.

The exception is the saddle-path case,62 ' ?2, where~�22_| � f and# ' ~3�
22 ,

so thati)| ' i)M|.

Combining equations (30) and (38) and (39) yields our solution:

 |n� ' 6 | nO

�
_|n�

0|n�

�
c (40)

O � ~2
�
~�22 #

�
c (41)

with  f satisfying

 f ' O

�
_f

0f

�
� (42)

3. Extensions and Interpretatiton

3.1 Uniqueness with Sunspots

Recalling equation (40), the solution to our system is the process for

i | ' ~2
�
~�22 #

�� _|

0|

�
c (43)

with 0| taken as given. Except in the saddle-path case, where~�22 and_| vanish, this

solution is not unique. The first step in handling the multiplicity of solutions is to

make sure that we have identified all of them. The relevant task is finding the set ofq
#c~�22c i_|j

r
that comprise a basis for

�
i)|

�
.14

As mentioned in section 2.3, this boils down to finding a basis for all the stationary

MDS processesi_|j, taking as given arbitrary choices of# and~�22. Put differently,

if
qe#ce~�22cqe_|

rr
yield the process

�
iT|

�
, then for the alternate matrices

qh#ch~�22r,

there exists a process
qh_|

r
that generates

�
iT|

�
as well.

�eNote that in searching for ig|j, one is looking across processes.
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To see that ~�22 can be chosen arbitrarily, consider two alternative bases for ~22’s

null space,e~�22 andh~�22. These two bases are related by

h~�22 ' e~�22�c (44)

with � E6� �6�� and full-rank. It immediately follows that

e~�22_| ' h~�22 ��3�_|

�
c (45)

verifying the claim.

To see that# can be chosen arbitrarily as well, consider two candidate matrices,

e# and h#. Now by construction

~22 e#W?2 � ~22 h#W?2 ' W?2 � W?2c (46)

so that

~22

ke#� h#l
' f� (47)

But this means that column by columne# and h# differ only by elements of~22’s

null space, so that

e#� h# ' ~�22��c (48)

with �� E6� � ?2�. Consider two candidate processes
qe_|

r
and

qh_|

r
, with

h_| � e_| ' ��0|� (49)

Then

e#0| n ~�22
e_| ' h#0| n ~�22

h_|c (50)

which verifies the second claim.

It is useful to decompose_| as

_| ' ��0| n _2|c (51)

with _2| orthogonal to0|. (�� is now arbitrary.) Typically, one can identify_2| up

only to a Choleski decomposition. This yields

_2| � �2B|c (52)
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where �2 is E6� �6�� and upper triangular, and the variance-covariance matrix of

B| is the identity matrix. Similarly, one can write 0| as

0| � �f/|c (53)

where �f is E?2 � ?2� and upper triangular, and the variance-covariance matrix of

/| is the identity matrix. This yields�
_|

0|

�
' �

�
B|
/|

�
c (54)

� �
�
�2 ���f

f �f

�
� (55)

Since, in most applications, one must pick 0| as well as _|, the relevant problem is

usually finding�.15 Once one has picked�, however, one has completely specified

the stochastic part of our linear system.

Two special cases deserve mention. The first is the saddle path case, 62 ' ?2,

where ~�22_| � f, # ' ~3�
22 and � ' �f. The second case is ‘‘full indetermi-

nacy,’’ where62 ' ?. In this case, once can set
�
~�22 #

�
' W62

, as there are no

restrictions whatsoever oni)| .

3.2 Sunspots and Exogenous Shocks

In the previous section we showed that as long as� is picked to satisfy some cri-

terion, the choice of# and~�22 amounts to little more than a change of basis. This

leaves us with the problem with picking�. To do this, we need62 stochastic restric-

tions. Return to the notation of the previous section, so that� can be decomposed

as in equation (55). Under our construction, the lower right corner of corner of�,

namely the matrix�f is given by the economic theory behind the side constraint

(36). We need6� additional stochastic restrictions to identify�� and�2.

�DOne can utilize non-triangular factorizations of Q as well, as long as one imposes enough restric-
tions to achieve identification. (One safe generalization is to let Q be block upper triangular, with
restrictions in Qf and Q2.)
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Mathematically, the ‘‘theoretical’’ restrictions given by (36) and the restrictions

used to identify ‘‘sunspots’’ are equivalent. As long as� is picked to satisfy some

criterion, one is free not only to choose# and~�22, but to pick?2 as well, subject

only to?2 � 62. Upon reflection, this is not suprising. Equation (30) shows that the

underlying problem is to identify the62 elements ofi)| . The question then becomes,

as Klein (1998) points out, of how to interpret the restrictions one places oni)| . For

example, when?2 	 62, one must supplement the?2 restrictions in equation (36)

with 6� restrictions for identifying_|. One could just as easily add6� rows to the

system in (36).

Leeper and Sims (1994) and Klein (1998) suggest the strategy of adding or re-

moving equations from equation (36) so that?2 always equals62. The advantage of

my approach is that it explicitly distinguishes between those restrictions explicitly

given by economic theory, and those used to achieve econometric—or calibration—

identification. For example, in the basic stochastic growth model, innovations to

the capital stock are identically zero—next period’s capital stock is known today—

and innovations to the technology process are exogenous. If these two theoretical

restrictions do not pin downi)| , one could argue, as do Farmer and Guo (1994), that

the stochastic growth model supports sunspots. My approach clearly identifies the

set of permissable ‘‘sunspot’’ processes.
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