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1. The Modified Barro-Gordon Model

1.1. The Model

The model extends Barro and Gordon’s (1983) by allowing the natural rate of
unemployment to follow a more general autoregressive process that contains a unit
root and by introducing control errors for inflation. The actual unemployment
rate U; fluctuates around the natural rate U in response to deviations of the
actual inflation rate m; from the expected rate 7{:

Ui = U — afm — 77), (1)

where a > 0. The natural rate fluctuates over time in response to real shocks
according to
U = UL = AU = Uly) + e, (2)

where 1 > A > 0 and ¢; is iid normal with mean zero and standard deviation o..

At the beginning of each period t = 0, 1,2, ..., after private agents have formed
their expectation 7§ but prior to the realization of the shock ¢;, the monetary au-
thority chooses a planned rate of inflation 7}. Actual inflation is then determined
by the sum of 77 and a control error 7,;

Ty = ﬂ-? + M5 (3)

where 7, is iid normal with mean zero, standard deviation o,, and covariance

ooy with €, The monetary authority chooses 7% in order to minimize a loss



function that penalizes variations of unemployment and inflation around target
values KU} < U]" and zero:

L = (1/2)(U; — kU?)* + (b/2)77,

with b > 0.
Using (1) and (3), therefore, the monetary authority’s problem can be written

min e {(1/2)[(1 — KU — a(m —m; + n))* + (b/2)(7] +n,)°},

where F; () denotes the expectation at the beginning of period ¢ or, equivalently,
at the end of period t — 1. The first-order condition for this problem is

aby [(1 = kU — a(rf —mf +n,)] = bE 1 (7] +n,). (4)

Private agents know the true structure of the economy and understand the
monetary authority’s time-consistency problem. In equilibrium, therefore, 7§ =
7t Using this condition as well as the fact that E;_in, = 0, (4) simplifies to

= aAE,_ U], (5)

where

A=(1-k)/b>0.
Equations (1) and (3), meanwhile, imply that

U, = U] — an,. (6)
Combining (2), (3), and (5) yields
m, = AU | + cANAUL | + 1y, (7)
where AU | = U}" | — U}",. Likewise, combining (2) and (6) yields
U =U{+ MNAU? | + & — an,. (8)

Together, (7) and (8) reveal that while both inflation 7; and unemployment U;
are nonstationary variables, inheriting a unit root from the underlying process for
the natural rate U;*, the linear combination m, — aAU, is stationary:

7 — aAU; = (1 + a®A)n, — aAs,. 9)
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A relatively weak testable implication of the modified Barro-Gordon model, there-
fore, is that inflation and unemployment should be nonstationary, but cointe-
grated, variables.

Taking first differences of (6) yields

AU, = AU — an, + an,_;.- (10)

Equations (9) and (10) indicate that for the purposes of estimation, the model
can be written in state-space form (Hamilton, 1994, Ch.13) as

§=FE& 1+ Qu

and
Y = Hftu

where the 4 x 1 unobservable state vector &, is given by

gt = ?
M1

the 2 x 1 disturbance vector v; is given by
o=
! Mt

2
o g
I _ € En
Evtvt =Y = 2 5
Oen 0'77

and has covariance matrix

the 2 x 1 observation vector y; is given by

. Ty — OéAUt
Y = AUt )

the 4 x 4 matrix F' is given by

oo o >
coc oo
—_ o oo
cooc oo



the 4 x 2 matrix @) is given by

O

I
oo~
o~ oo

and the 2 x 4 matrix H is given by

0 —aA 1+a?4 0

HZlO —Q a |’

Conditional on {1,y 2, ..., Y1}, ¥ is normally distributed with mean H¢,,_;
and variance HPy,_H', where {£,, ;}/_, and {P,;_1}}Z; may be constructed
recursively using the initial conditions

51|0 = 0p1

and
vec(Pyjo) = [liex16 — F ®@ F] ™ vec(QEQ')

along with the updating equations
K, = FPy_H'(HPyH') ",

£t+1|t = F£t|t71 + Ki(yr — H£t|t71)>

and
Piyijp = (F — KeH) Py 1 (F' — H'K}) + QXQ

fort=1,2,...,T — 1. Thus, the log likelihood function is
T
L=-Th2r)+> L,
t=1

where
1 1
Ly = D) ln[det(HPtIt—lHl)] - 5(% - Hft\t—1)l(HB|t—1Hl)il (Y — H£t|t—1)'

The model may be estimated by choosing values for a, A, A, 0., 0,, and 0., that
maximize L.



Equation (9) shows that 7, — AU, is iid. Equation (10), meanwhile, can be
rearranged to obtain
AU = AUy + an, — any_y,

which, when substituted into (2), yields

Evidently, AU; follows an ARMA(1,2). Hence, (9) and (10) can be viewed as a
constrained vector ARMA(1,2) for a stationary linear combination of inflation and
unemployment 7, —yU; and the change in unemployment AU;. An unconstrained
model of this form is given by

[ m — YU, 1 _ [ " ™ 1 [ i1 — U1 ]
AUt - ¢u7r ¢uu AUtfl

A 07" 9?“1 lef_ll 05" 93”] [5?—2]
+ U + um UU U + U uu U )
l & l 01" 0y €1 i 05" 0, €2

where

er 02 Ony |
E 4 T U — T T
[Eg‘|[€t €t} [Umt 03
The constrained model has 6 parameters, while the unconstrained model has 16
parameters. Thus, the Barro-Gordon model imposes 10 constraints on the time-
series model.
The unconstrained model has the state-space representation

§=F& 1+ Qu

Yo = Hftu
where the 6 x 1 state vector ¢, is given by

[ e — yU, |
AU,

™




the 2 x 1 disturbance vector v; is given by
_| &

2
o, O
/ U
Evtvt:Z:l 4 9 1,

and has covariance matrix

Ory O

the 2 x 1 observation vector y; is given by

_ T — Ui
yt_[AUt ‘|7

the 6 x 6 matrix F'is given by

B (ZSﬂ"Tl' (ZS’TI'U 6711'71' 9’71TU 6721'71' 972TU T
(ZSU’TI' (ZS'U/U eqib’ﬂ' Q'JU:U 67571' ggu
o o0 o0 0 0 ©
F= o o0 o0 0 0 O ’
0 0 1 0 0 0
o 0o o0 1 0 0 |
the 6 x 2 matrix @ is given by
"1 01
0 1
10
Q - 0 1 )
00
L O O -

and the 2 x 6 matrix H is given by

1 00

000
H_OIOOOO'

Conditional on {y; 1,y: 2, ..., y1}, ¥ is normally distributed with mean H Euge—1
and variance HFPy,_1H', where {ft‘t,l}le and {B‘t,l}le may be constructed
recursively using the initial conditions

€110 = Ogx1
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and
vec(Pyjo) = [I36x36 — F'® F] wec(QEQ')

along with the updating equations
K, = FPy H'(HPy H') ",

£t+1|t = F£t|t—1 + Ki(yr — H€t|t—1)u

and
P = (F — KH)Pyy (F' — H'K,) + QXQ'

for t =1,2,...,7 — 1. Thus, the log likelihood function is
T
L*=—-T(2m) + > LY,
=1

where
1 1 _
Ly = D) In[det(H Py H')] — 5(% — H&yy) (HPyr H') 7 (ye — Hyyn)-

The model may be estimated by choosing values for the 16 parameters that maxi-
mize L". Under the null hypothesis that the constraints hold, the likelihood ratio
statistic

2(L* — L)

has a chi-square distribution with 10 degrees of freedom and can be used to test
the constraints.

1.2. Testing for Unit Roots

Equations (7) and (8) show that according to the model, both the inflation rate
and the unemployment rate ought to be nonstationary. The Phillips-Perron (1988)
test described by Hamilton (1994, Ch.17) may be used to test for unit roots in
these two variables. Since there is no obvious trend in either variable, the test
procedure begins by estimating the regression equation

Y = Q@+ pYr—1 + Uy

by OLS. Let p denote the OLS estimate of p, let 6, denote the OLS standard
error of p, and let ¢t = (p — 1)/, denote the usual ¢-statistic.
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In general, u; will follow an MA (0o) process, so that the long-run variance of
uy, denoted A2, must be computed as suggested by Newey and West (1987). Let

T
Yo=T"" Z“?
t=1
and, more generally, for 7 =1,2,...,q, let

T
_ =1
v =T > wy.
t=j5+1

Then .
=742 [1—j/(g+ )]y,
j=1
Finally, let

T
= (T—-2)7"> v
=1

denote the usual OLS estimate of the variance of u;. Then the Phillips-Perron
statistic

Zy = (1o/ )2t = (1/2)[(N* = 0) /N(T5,/5)
has critical values reported under the heading ”case 2” in Hamilton’s table B.6
(p.763).

In computing A\?, ¢ may be chosen as suggested by Andrews (1991). This
procedure involves making the extra assumption that the process for u; is well-
approximated by an AR(1):

U = TU—1 + Ey.

With 7 estimated by OLS, the optimal choice for ¢ is given by
q=1.1447(aT)® — 1

where
4mr?
(1—m)2(1+m)?
The test statistics are tabulated below for the unemployment rate and the
inflation rate.

o =

P t q  Z
unemployment rate  0.9519 -1.7880 4 -2.5186
GDP deflator inflation 0.8788 -2.5362 0 -2.5362
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The data are quarterly, and run from 1970:1 through 1997:2. Hence, T" = 110.
The unit root hypothesis cannot be rejected, even at the 90 percent confidence
level, for the unemployment rate and the inflation rate. Notice that there is little
evidence of serial correlation in the residuals from the inflation regression; hence,
in this case, the Phillips-Perron test reduces to the tests originally developed by
Dickey and Fuller (1979).

1.3. Testing for Cointegration

Equation (9) shows that according to the model, the inflation rate and the unem-

ployment rate ought to be cointegrated. One approach to testing for cointegra-
tion is the Phillips-Ouliaris (1990) approach described by Hamilton (1994, Ch.19).
This approach starts by estimating the regression equation

T = Q + /BUt + Uy
by OLS. Next, the residual u; is regressed on its own lagged value:
Up = PUs—1 + E.

Let p denote the OLS estimate of p, let 6, denote the OLS standard error of p,
and let t = (p — 1)/6, denote the usual t-statistic for the null hypothesis that
p=1

If &, is serially correlated, its long-run variance, denoted A\, must be computed
as suggested by Newey and West (1987). Let

~

Yo = (T - 1)71253

t=1

and, more generally, for 7 =1,2,....q, let

T
’)/j = (T — 1)_1 Z Et€t—j-
t=j+1

Then .
No=q+2> [1—j/(qg+ 1)

j=1
Finally, let

~

$=(T-2)7"Y ¢

t=1



denote the usual OLS estimate of the variance of ;. Then the

Zy = (70/ )"t = (1/2)[(N* = 70) /AT — 1)5,/5]

has critical values reported in Hamilton’s table B.9 (p.766). Hamilton’s ”case 1”
refers to the case in which the constant « is omitted from the initial cointegrating
regression; "case 2”7 refers to the case in which the constant is included in the
regression.

Again, the data are quarterly, and run from 1970:1 through 1997:2. The
test results are tabulated below for the case suggested by the theory: without a
constant.

A

B p 13 q Zy
0.1791 0.8709 -2.7603 0 -2.7603

The null hypothesis of no cointegration can be rejected at the 95 percent con-
fidence level. Hence, the test suggests that the data are consistent with this
weak implication of the Barro-Gordon model. And there is no evidence of serial
correlation in &;; Andrews’ (1991) method dictates a choice of ¢ = 0.

One potential weakness of the residual-based, Phillips-Ouliaris approach to
testing for cointegration, discussed by Hamilton (1994, pp.589-590), is that the
results in finite samples can depend on which variable, inflation or unemployment,
is used as the dependent variable in the cointegrating regression. Here, however,
(9) indicates that the cointegrating relationship is of the form 7; — yU;, making
inflation the obvious choice of dependent variable.

Nevertheless, the robustness of the results obtained with the residual-based
approach can be assessed by also testing for cointegration using the Johansen’s
(1988) maximum likelihood approach, as described by Hamilton (1994, Ch.20),
which does not require a choice of normalization. The Johansen approach proceeds

as follows.
_ | ™
yt - Ut .

Let y; be the 2 x 1 vector
Next, suppose that y; follows a VAR(p) in levels; this VAR can be written in the
form
Ay = §1 Ay 1+ EHAY 2+ o+ 6 1 AYrpr1 + oY1 + &y
with Feie} = Q. Suppose, also, that m; and U; are both I(1), but a linear combi-
nation of the two variables is stationary. This implies that

60 = _BA/7
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where A and B are both 2x 1 vectors. Under the assumption that the disturbances
g, are Gaussian, the log likelihood function takes the usual form. Johansen’s devel-
ops an algorithm for finding the maximum likelihood estimates without actually
setting up and maximizing the likelihood function.

The first set is to estimate a VAR(p— 1) for Ay,; this simply means estimating
the system

Ay, = ILh Ay + LAYy + . + T 1 Ay pig + 1wy

using equation-by-equation OLS. Then estimate a second set of auxiliary regres-
sions of the form

Y1 = @1Ayt71 + @2Ayt72 + ...+ (H)pflAytfp-&-l —+ vy.

Obviously, both u; and v; are 2 x 1.
Next, calculate the sample covariance matrices of u; and v;:

T
Tuw = (1/T) Y wsni,
t=1

T
Zuw = (1/T) 3wy,
t=1

Yoou = 21

uv?

and .
Y = (1/T) Z v},
=1

where each matrix is 2 x 2. From these, find the eigenvalues \; > Ay of the 2 x 2
matrix
)k DD DD S

Let a; and ay be the associated eigenvectors. Johansen suggests normalizing
these so that a.¥,,a; = 1 for ¢ = 1,2; this can be done easily by letting a; =
a;/(a;Xy,a;)?. The maximized value of the log likelihood function, attained
subject to the constraint that there are h cointegrating relationships, is given by

Ly = —Thn(2r) — T — (T/2) log|det(Sy.)] — (T/2) fjmu — M)
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The final step is to calculate the maximum likelihood estimates themselves.
Under the assumption that there is one cointegrating vector:

A= ay,
50 = ZuvAA,?
fz’ =1II; — 50@

fori=1,2,....,p—1, and

T
1/T Z fovt U — 601]75)/.
t=1

The preceding analysis assumes that there are is no constant in the cointegrat-
ing regression, as implied by (9), and that there are no deterministic trends in the
data; under these assumptions, no constant terms are included in the preliminary
regressions.

To test the null hypothesis of no cointegrating relationship against the alter-
native of one cointegrating relationship, one can uses the likelihood ratio statistic
2(Lo — L), which has the particularly simple form

2(L1 — Lo) = —Tln(l — )\1)

Critical values for this test statistic are reported under the heading ”case 1” in
Hamilton’s table B.11. The number of random walks, which Hamilton denotes g,
equals the number of variables n minus the number of cointegrating relationships
h under the null hypothesis. Thus, in this case, g = n —h =2 — 0 = 2. Since
two cointegrating relationships would imply that both variables are stationary in
levels, a test of this hypothesis seems redundant, given the results of the unit root
tests.
The results from the Johansen approach are tabulated below.

A Y A 2(L1 — L)
0.1189  0.0050 [1.6985 —0.3303} 13.6701

The null hypothesis of no cointegration can be rejected in favor of the hypothesis
of one cointegrating vector at the 97.5 percent confidence level. Furthermore,
renormalizing the estimated cointegrating relationship

1.6985m, = 0.3303U;
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yields

m = 0.1945U4,
which is quite similar to the OLS estimate
m = 0.17910;

obtained from the Phillips-Ouliaris approach. Regardless of which testing ap-
proach is used, therefore, the data appear to be consistent with the Barro-Gordon
model’s implication that inflation and unemployment are cointegrated.

1.4. Estimating the Model

Maximum likelihood estimates of the parameters of the constrained model are
presented in the table below along with their standard errors, computed by tak-
ing square roots of the diagonal elements of the inverse of the information matrix.
The estimates are obtained using the Kalman filter, as described above. The
starting value for each parameter is also given in the table, although experiments
with various alternative starting values yielded identical parameter estimates. In
practice, the estimation procedure constrained the autoregressive parameter A to
lie between -1 and 1 by searching instead over values of ¢ and using the transfor-
mation
¢

1+ ¢

In addition, to make sure that the estimate of covariance matrix Y remained
positive definite, the estimation procedure searched over values of the elements of
the Cholesky decomposition €2 of X::

o[58
wﬂ'u wu

Y =00
Both of these techniques are suggested by Hamilton (1994, pp.146-147).

A=

where

Starting Value Parameter FEstimate Standard Error

0.5 o 0.1537 0.0641
0.5 A 1.1744 0.4894
0.5 A 0.5505 0.0810
1 o 0.2905 0.0202
1 oy 0.6530 0.0446
0 Oen 0.0725 0.0200
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L = maximized value of log likelihood = —119.8246

The parameter estimates are all quite reasonable and the standard errors are
small. The estimate o = 0.1537 suggests that the Phillips curve is fairly steep:
a one percentage point forecast error in inflation translates into only a 0.15 per-
centage point decline in the unemployment rate. The estimate of A = (1 —k)/b is
greater than one; although £ and b are not individually identified, the restriction
1 > k > 0 implies that b must be less than one. Evidently, the Federal Reserve
placed more weight on its goals for unemployment than its goals for inflation over
the sample period. In addition, using (9), the estimated cointegrating vector for
inflation and unemployment is given by

m = a AUy = 0.1805U4,
which is quite similar to the OLS estimate
m = 0.17910;

obtained from the Phillips-Ouliaris approach. Finally, the estimate o.,, = 0.0725 >
0 indicates that unfavorable shocks to the natural rate of unemployment tended
to coincide with unfavorable shocks to inflation; this finding is consistent with the
idea that ¢, represents a real, or supply-side, shock.

1.5. Testing the Model

Maximum likelihood estimates of the parameters of the unconstrained model are
presented in the table below along with their standard errors, computed by tak-
ing square roots of the diagonal elements of the inverse of the information matrix.
The estimates are obtained using the Kalman filter, as described above. The
starting values for each parameter, also reported in the table, were obtained by
estimating a vector VAR(1) for the linear combination m; — 0.1791U; of unem-
ployment and inflation and the change in unemployment AU;, where the estimate
of the cointegrating vector is taken from Phillips-Ouliaris regression discussed
above. To make sure that the estimate of the covariance matrix > remained pos-
itive definite, the estimation procedure searched over values of the elements of
the Cholesky decomposition ¥, as in the constrained case and as suggested by
Hamilton (1994, p.147). Unlike the constrained case, however, the ¢ parameters
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were not transformed during estimation.

Starting Value Parameter FEstimate Standard Error

0.18 v 0.1978 0.0179
0.91 " 1.1796 0.0898
-0.25 o™ -0.7315 0.2247
0.16 " 0.2363 0.0818
0.54 i 0.4092 0.1748
0 07" -0.5645 0.1341
0 o7 0.2067 0.2592
0 6" -0.1125 0.1089
0 0" 0.0870 0.1634
0 03" -0.2152 0.1091
0 03" 0.6326 0.2152
0 04" -0.0939 0.0800
0 gy 0.1191 0.1382
(0.094)'/2 Ox 0.2711 0.0186
(0.071)'/2 oy 0.2657 0.0182
-0.0096 Oru -0.0144 0.0074
LY = maximized value of log likelihood = —21.7904

The parameter estimates are all quite reasonable. Hamilton (1994, Ch.10,
p.259) and Harvey (1981, Ch.2, p.51) state the condition that must hold if the
ARMA(1,2) process is to be stationary; the roots of

[IN—®| =0
must both lie inside the unit circle, where
¢’7T7T ¢7T'U/
¢ = % uy | -
l R

The roots of this equation coincide with the eigenvalues of ®; hence, stationarity
requires that both eigenvalues of ® lie inside the unit circle. In fact, the eigenvalues
of ¢ are

A1 = 0.7944 + 0.1565¢

and
Ao = 0.7944 — 0.1565¢,
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so that indeed
[A1] = [ A2 = 0.8097 < 1,

indicating that the model is stationary.
Harvey (1981, Ch.2, p.51) states the condition that must hold if the model is
to be invertible; the roots of

1N+ O\ + 6| =0
must all lie inside the unit circle, where
_[er o
@1 - [ ezlnr gzlm ‘|
and
5T 65"
@2 - [ egm ggu ‘|
The roots of this equation coincide with the eigenvalues of the matrix
o o 5 0
0y o oy oy
1 0 0 0
0 1 0 0

0=

Hence, invertibility requires that all four eigenvalues of O lie inside the unit circle.
In fact, the eigenvalues of © are

A1 = 0.4965 + 0.11484,

Ao = 0.4965 — 0.1148i,
A3 = —0.2577 + 0.25244,

and
A = —0.2577 — 0.25244,

so that indeed
|A1] = |2 = 0.5096 < 1

and
|)\3| = |>\4| = 0.3607 < 1,

indicating that the model is invertible as well.
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The table below compares the estimates of the cointegrating vector m, — yU,
obtained by each method.

Estimation Method  Estimate of v, m, — yU;

Phillips-Ouliaris 0.1791
Johansen 0.1945
Constrained Model 0.1805
Unconstrained Model 0.1978

The estimates are all quite similar.
The likelihood ratio statistic for the test of the Barro-Gordon model’s restric-
tions is given by

2(L" — L) = 2(119.8246 — 21.7904) = 196.0684.

The 99.9 percent critical value for a chi-square random variable with 10 degrees
of freedom is 29.6 (Hamilton, table B.2, p.754). The model’s implications are
overwhelmingly rejected.
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