?This part belongs to short-run analysis. One have to determine those ?variables, who react in order to re-establish the long-run, when there ?are temporary deviations from steady-state. The application tests, f.e., ?whether y1 is weakly exogenous in respect of the cointegration relations ?and provides the estimation of the model under the null. . . . (same regressions as above) mat soo = soo/t1; mat sok = sok/t1; mat sko = sko/t1; mat skk = skk/t1; freq n; smpl 1 3; load x1; 1,0,0; load x2; 0,1,0; load x3; 0,0,1; mmake a x2 x3; mmake d x1; mat h = d'soo*d; mat hinv = h"; mat saab = a'soo*a-a'soo*d*hinv*d'soo*a; mat sakb = a'sok-a'soo*d*hinv*d'sok; mat skab = sko*a-sko*d*hinv*d'soo*a; mat skkb = skk-sko*d*hinv*d'sok; mform(type=sym) skkb; mat cho = chol(skkb); mat chot = cho'; mat chotinv = chot"; mat saabinv = saab"; mat choinv = cho"; mat b = chotinv*skab*saabinv*sakb*choinv; mform(type=sym) b; mat eigen = eigval(b); mat vec = eigvec(b); mat vectors = choinv*vec; mat ainv = (a'a)"; mat loadings = a*ainv*sakb*vectors; freq n; set n=3; smpl 1 n; unmake eigen eigs; unmake eigen eigens; sort (reverse) eigs; print eigs eigens vectors loadings; ll = log(1-eigs); set j=1; dot 0-2; smpl j n; msd ll; set lr. = -t1*@sum; set j=j+1; enddot;