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Solution of Infinite-Horizon Multivariate Linear Rational
Expectations Models and Sparse Linear Systems

In this note, we illustrate how the two numerical schemes discussed in our paper “Solution of
Finite-Horizon Multivariate Linear Rational Expectations Models and Sparse Linear Systems”
may be used to solve infinite-horizon multivariate linear rational expectations (MLRE) models.
The note shows how to apply the numerical schemes of Proposition 5.1 (based on the LDU-
factorization) and of Proposition 5.2 (based on Bowden’s procedure) to the solution of a simple
infinite-horizon stochastic growth model. This example is meant to be pedagogical. We have
chosen it for this note because it shows that on occasions there may be a choice between
solving the MLRE model under consideration, if it has a singular coefficient matrix B, by
direct application of Proposition 5.1, or by first transforming it so that the coefficient matrix
B is rendered nonsingular and Proposition 5.2 can be applied.

Proposition 5.1 and Proposition 5.2 can be applied to infinite-horizon MLRE models by
noting that if the MLRE model

xt = Ax¢—1 + BE (X¢41|%) + Wy, (1)

has a unique stable solution, then the solution x; does not depend on E (x741|€2) for a large
enough value of T' — t. In practice, one will have to solve for x; using different values of T'— ¢
and E (x741|Q¢) (proceeding recursively forward), and inspect the sensitivity of the solution
to these choices.

Consider the following social planning problem describing a standard stochastic growth

model: - -
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log Ay =po+pilog Ay +e, XN (0, 02) , (4)

with the initial conditions ky and A_; as given. Here, ¢; denotes consumption at time ¢, k; the
capital stock at the start of the period ¢, Ny represents labor input, A; the index of technological

progress, B the discount factor, and the information set §2; is specified to contain:

O ={ct, ce-1, o5 keyrs ke, oo Ny Neog, o)



We assume that {log A;} follows a covariance-stationary process (| p1 | < 1), and normalize the
time-endowment so that N; = 1, for all ¢. Log-linearizing the first-order conditions for this
optimization problem around the non-stochastic steady-state values,! one obtains the MLRE

model

x; = Mgy Miox;_1 + Myg M1 E (x¢41/9%) + Mog wi, (5)

where
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with s, = ¢/ (A_kl_a), sp = k/ (A_kl_a), & = log (¢t/2), ke = log (k;t/E), A, = log (AMZ),

and the non-stochastic steady-state values A, k, and € satisfy the following equations:
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and

c=Ak " — k.
Equation system (5) is a special case of the MLRE model (1) with A = My Mig, B =
Maole, and w; = Maolw,f . From the definition of My, it is clear that the matrix B for the
stochastic growth model considered here is singular. To solve the MLRE model (5) without
further transformations, one needs to apply Proposition 5.1, assuming there is a unique stable

solution.

Alternatively one could eliminate ¢ from (5), to obtain the MLRE model

k1 = Mg Mioks + M Mot B (Fiy2|) + Wi, (6)
where
Moo = —nk/c— af(1—a) Ak “ —n((1 - 6) sk + (1 - a)) /sc,
My =-n((1—8)sp+(1—a))/se, Moy =—nk/c,
and

Wi == (n/se) Av+ (n/se = B(1— ) AR *) B (Arya]Q) .

!Given the log-linear decision rule setting, specifying the innovations to technology, e:, as iid normal does not
cause problems for the existence of a time-invariant steady-state probability distribution function for consumption

and the capital stock.



Equation (6) is now a special case of the MLRE model (1) with A = 1/\\/15011/\\/110, B= 1/\\/15011/\\/101,
and w; = 1/\\/1501\?\1,5, and has a scalar coefficient matrix B, which is (trivially) nonsingular. As-
suming (6) has a unique stable solution, this solution can be computed by applying Proposition
5.2.

For our numerical illustration, we choose the following parameter values, which ensure that
(5) and (6) have unique stable solutions: 5 = (1.03)_1/4, n=.8 a=.64 6 =.02, pp = .15,
p1 = .96, and o = .02. Using these parameter values, we obtain the following decision rules
upon solving (5) using Proposition 5.1, and solving (6) using Proposition 5.2 (and using in this

latter case the resultant decision rule for %t to obtain the decision rule for ¢):

[ 0 .6825 Ci— .2637 ~
- = )+ Ay (7)
K1 0 .9691 Jot 0613

In this simple example, the CPU-times required with our programs for obtaining (7) using
Proposition 5.1 or Proposition 5.2 differ only insignificantly. It is clear, however, that for
higher-dimensional problems the numerical scheme of Proposition 5.2 may be more efficient
than that of Proposition 5.1, if the MLRE model under consideration may be transformed into
a model with a nonsingular coefficient matrix B. Either procedure only involves elementary ma-
trix operations (addition, multiplication, inversion) but no matrix similarity transformations,
and thus can be an attractive alternative to similarity transformation based non-recursive pro-

cedures.



