
A User Guide for Matlab Code for an RBC Model

Solution and Simulation

Ryo Kato¤

Department of Economics, The Ohio State University

and Bank of Japan

Decemnber 10, 2002

Abstract

This note provides an easy and quick instruction for solution and simulation of a

standard RBC model using Matlab.

The Matlab code introduced here is extremely compact and easy to hadle in the sense

that it requires neither external functions/sub-procedures nor benchmark data. The

solution method used in the code is standard undermined coe¢cient method (eigen de-

composition method) based on log-linearized system.

The code is available at http://economics.sbs.ohio-state.edu/kato/matlab/RBC1.m

¤E-mail: kato.13@osu.edu or ryou.katou@boj.or.jp

1

1 Overview

Make sure that your PC is installed with Symbolic Math tool-box in an appropriate
folder. Usually, you …nd a folder named ‘‘toolbox’’ under your MATLAB folder. The code
introduced in this note is only one sheet in length, but everything necessary to solve/simulate
an RBC model is contained in the sheet. You do not have to take derivatives to derive the
…rst order conditions here in the code. All those analytical calculations are processed au-
tomatically by your Matlab. Generally, what you have to do to run the code is only two
things, namely, choosing parameter values and writing down all the …rst order conditions
and resource constraints. Note that those conditions can be non-linear, since, as I men-
tioned, automatic log-linearization is a part of the code. The Matlab code is downloadable
at http://www.econ.ohio-state.edu/kato/matlab/RBC1.m .

The code consists of …ve parts as follows,

1. Parameter proc

2. Steady State proc

3. Model proc

4. Linearization proc

5. Solution proc

6. Simulation proc

If you change the Model part, then you have to modify the Steady-state part accordingly.
In most cases, you do not have to change the Linearization part and Solution part. There
are two versions for the Simulation part, that is, (1) impulse response and (2) stochastic
simulations to obtain second moment of simulated data.

This note is organized as follows. First, I illustrate a standard RBC model that will be
solved in the code. Namely, I start with an example, since it is always easier (at least for
me) to consider an example than general/abstract argument. Section 3 is the instruction
for each part of a code. Section 4 provides some remarks.

2 The standard RBC model

Consider a standard RBC economy with a representative household whose preference is
speci…ed as follows,

max
ct;lt

: E0

1tX
t=0

¯t
µ
c1¡¾t

1¡ ¾ ¡ l
¸
t

¶
s; t; at+1 = (1 + rt)at ¡ ct +wtlt:

2

where ct and lt denote consumption and labor supply. at, rt and wt stand for non-human
asset, interest rate and wage rate for households. Assume that the representative …rm has a
Cob-Douglas technology in labor and capital. The recursive competitive equilibrium of the
economy is de…ned as a set of ct, lt, nt , kt+1, wt and rt which satisfy the following e¢ciency
conditions,

Et¯ (1 + rt+1)£ c¡¾t+1 = c¡¾t (euler)

¸l¸¡1t ¡ wtc¡¾t = 0: (labor)

(1)

(1¡ ®)vt
µ
kt
nt

¶®
= wt (2)

®vt

µ
kt
nt

¶®¡1
¡ ± = rt (3)

and resource constraints,

kt+1 ¡ (1¡ ±) kt = it

= yt ¡ ct (capital)

lt = nt

where yt = vtk®t n
1¡®
t : We can add one more exogenous stochastic process for productivity

shock, vt such as AR(1) as follows,

vt+1 = Ávt + (1¡ Á) v¤ + "t
where v¤ denotes a normalized steady state level of productivity.

3 The Matlab code

3.1 Steady state proc

Let’s start with the steady state part. The purpose of this part is to compute steady
state values of endogenous variables. You have to solve a non-lnear multiple equation system
numerically. Here is the steady state conditions for our example.

¯(1 + r¤) = 1

¸l¤¸¡1 ¡w¤c¤¡¾ = 0 (4)

(1¡ ®) v¤
µ
k¤

l¤

¶
= w¤ (5)

®v¤
µ
k¤

n¤

¶®¡1
¡ ± = r¤

c¤ + ±k¤ = c¤ + i¤

= y¤

= v¤k¤®l¤1¡®

3

You have to think for yourself in this part, if you change the model in this example. There
can be many di¤erent orders for computation. Of course, you will obtain right answers,
as long as you write down the steady state conditions correctly. But here in a Matlab
code, I encourage you to pick up one that requires less computational burden. Note that
Matlab works more quickly with step-by-step substitution, rather than solving simultaneous
equations. So basically, reduce simultaneous equations. Here is my suggestion. I begin
with r¤.

r¤ = ¯¡1 ¡ 1
k¤

l¤
=

µ
r¤ + ±
®

¶ 1
®¡1

denoted as

kls = (((1/beta)-1+delta)/alpha)^(1/(alpha-1));

I can ignore v¤, since it is normalized at one. Note that so far I only use step-by-step
substitutions to obtain, r¤, w¤ and k¤=l¤ (=kls). For the rest of the part, a little device will
save lots of computational burden. Divide resource constraint by l¤. Then we have c¤=l¤

(=cls) as follows,

c¤

l¤
=

y¤

l¤
¡ i

¤

l¤

=

µ
k¤

l¤

¶®
¡ ± k

¤

l¤
:

This is denoted as,

cls = kls^alpha-delta*kls;

Then rede…ne c¤ = (c¤=l¤)£ l¤ and eliminating w¤ from eqn 4 and leaves,

¸l¤¸¡1 £ c¤¾ ¡ (1¡ ®)
µ
k¤

l¤

¶®
= 0:

Note that this equation contains only one unknown variable, l¤, since k¤=l¤ (=kls) is already
known and c¤ is a function of l¤. To solve this non-linear equation numerically, we can use
solve command in Matlab. You will …nd the following lines in the code,

ss1 = (lamda*ls^(lamda-1))*(cs^sigma) - (1-alpha)*(kls^alpha);

lss = solve(ss1,ls);

ls = double(lss);

kstar = kls*lstar;

cstar = clstar*lstar;

Now you …nd all the steady state values. There can be many other ways to compute them.
This part depends on your way of thinking how to minimize the computational burden.

4

3.2 Model proc

First, make the list of all the variables that you want to compute by using syms command.
In this simple RBC case, we have ct, kt, lt, rt, vt, ct+1, kt+1,lt+1;,rt+1 and vt+1 which can
be written as,

syms ct kt lt rt vt ca ka la ra va ;

Remember that a stands for one-period ahead, such that ca denotes ct+1, similarly, ka
denotes kt+1. This is just my notation. Then, write down all the e¢ciency conditions and
resource constraints. There is only one rule here. Express all the equations with zero in the
left-hand side. Further, you can give each equation a name and write those names in the
LHS instead of zero.

wt = vt*(1-alpha)*(kt/lt)^alpha;

ra = va*alpha*(ka/la)^(1-alpha);

labor = lamda*lt^(lamda-1)-wt*ct^(-sigma);

euler = beta*(1+ra)*ca^(-sigma)-ct^(-sigma);

capital = ka - (1-delta)*kt-vt*(kt^alpha)*(lt^(1-alpha))+ct ;

tech = va - phi*vt;

Before writing those conditions, I eliminate wt and rt+1 using …rm’s optimal conditions.
You do not necessarily have to do this. Nonetheless, this procedure will reduce computational
burden. Note that the two e¢ciency conditions, euler and labor are expressed only by
quantity variables, ct, ct+1, lt, lt+1, kt and kt+1, since the …rst and second lines substitute
wt and rt+1 out of them.

optcon compiles those e¢ciency conditions vertically in one matrix. This makes it
possible to use jacobian command in next step.

3.3 Linearization proc

xx denotes endogenous variables vector to which you want to take derivative. When you
pool them into the xx vector, let the t+ 1 variables come …rst, such that,

xx = [ca la ka va ct lt kt vt] ;

The next line jopt is the analytical expression of …rst order derivatives of all the equation
pooled in optcon. jacobian command is extremely useful, since it gives you the Jacobian
matrix in analytical form. Now, evaluating the Jacobian matrix at the steady state values
will be the completion of linearization. This can be done by substituting the steady state
values that we have already computed. You will see,

5

coef = eval(jopt);

which converts the Jacobian matrix in analytical form jopt, into numerical form coef.
In the …nal part of the linearization step, you need to separate the coef matrix in two. The
…rst four columns correspond to period t+1 variables and the rest of four columns to period
t variables.

B = [-coef(:,1:4)].*TW ;

C = [coef(:,5:8)].*TW ;

where TW denotes steady state values again, so that the coe¢cient matrix could be mea-
sured as percentage deviation from the steady state values. Here, we have the following
linearized system.

Cyt+1 = Byt

where yt = (ct lt kt vt)
0 and, B and C are 4 £ 4 matrix with numerical elements. Finally,

de…ne A matrix as follows,

yt = C¡1Byt+1
´ Ayt+1: (6)

3.4 Solution proc

In the Solution proc, our purpose is to decompose A matrix and eliminate all the unstable
roots (µi < 1)1. You can ignore the instruction of this proc, since you do not have to change
this proc for any dynamic general equilibrium models.
First, eqn (6) can be expanded and eigen-decomposed as follows.

26664
ct

lt

kt

vt

37775 =

266664
a11 ¢ ¢ ¢ a14
...

a41 a44

377775
26664
ct+1

lt+1

kt+1

vt+1

37775
= Q¡1VQyt

"
QU

QS

#
yt =

266664
µ1 ¢ ¢ ¢ 0
... µ2

µ3

0 µ4

377775
"
QU

QS

#
yt+1 (7)

1Do not get confused with the notation. Matlab computes the eigen matrix as the inverse of what we
have in our mind. So make sure that 1=µi is a root of the characteristic equation.

6

The following part of the code corresponds to the above calculation. Namely, (1) decom-
position of A matrix, (2) Extracting stable roots (µi ¸ 1) and de…nition of the matrices QU

(=UQ) and QS (=SQ):

[W V] = eig(A);

Q = inv(W);

W*V*Q;

theta = diag(V)

% Extract stable vectors

SQ = []; jw = 1;

for j = 1:length(theta)

if abs(theta(j)) >1.000000001

SQ(jw,:) = Q(j,:);

jw = jw+1;

end

end

% Extract unstable vectors

UQ = []; jjw = 1;

for jj = 1:length(theta)

if abs(theta(jj))<1.000001

UQ(jjw,:) = Q(jj,:);

jjw = jjw+1;

end

end

% Extract stable roots (lamda>1)

VLL = []; jjjw = 1;

for jjj = 1:length(theta)

if abs(theta(jjj)) >1.000000001

VLL(jjjw,:) = theta(jjj,:);

jjjw = jjjw+1;

end

end

% Show Eigen Vectors on U-S Roots

UQ; % n x n+k

SQ; % k x n+k

By applying the Blanchard-Kahn theorem, we know that two out of four eigen values
are greater than one. Let µ3 > 1 and µ4 > 1: Remember that they are stable roots. The
number of rows ofQU (=UQ) coincides with the number of unstable roots (= n) and similarly,
number of rows of QS is equal to that of stable roots (= k).

7

k = min(size(SQ)); % # of predetermined vars

n = min(size(UQ)); % # of jump vars

And the following part,

PA = UQ(1:n,1:n); PB = UQ(1:n,n+1:n+k);

PC = SQ(1:k,1:n); PD = SQ(1:k,n+1:n+k);

implies,

Q=

"
QU

QS

#
=

"
PA PB

PC PD

#
:

Then, the following relation is true to satisfy transversality condition.

QUyt ´
h
PA PB

i
yt

= 0

where QU is a 2£ 4 matrix. This can be rewritten as"
ct

lt

#
= P¡1A PB

"
kt

vt

#

´ P

"
kt

vt

#
:

This is the rational expectation solution of the system. The corresponding part in the code
is,

P = -inv(PA)*PB ;

Expanding eqn (7) and substituting the solution yields,

PC

"
ct

lt

#
+PD

"
kt

vt

#
=

"
µ3 0

0 µ4

#(
PC

"
ct+1

lt+1

#
+PD

"
kt+1

vt+1

#)

= V¡1
L (PCP+PD)

"
kt+1

vt+1

#

´ V¡1
L PE

"
kt+1

vt+1

#
Then …nally, we have,

"
kt+1

vt+1

#
= P¡1E VLPE

"
kt

vt

#

´ AA

"
kt

vt

#
:

The ultimate purpose of this section is to derive AA matrix shown above.

8

3.5 Simulation proc

Once you obtained the AA matrix, impulse response function can be computed by step-
by-step substitution as shown below,

Ss = S1;

S = zeros(t,k) ;

for i = 1:t

q = AA*Ss ;

S(i,:) = q’;

Ss = S(i,:)’;

end

SY = [S1’ ;S] ;

where S1 and SY denote arbitrary initial value and the simulated path of state variable
(= (kt+i vt+i)

0). Multiplying P matrix will give you the solution path of jump/control
variables (= (ct+i lt+i)0 =X), namely,

X = (real(P)*SY’)’;

(Instruction for stochastic simulation is a work in progress.)

4 Remark

If you have any question, you can email me to kato.13@osu.edu or ryou.katou@boj.or.jp.
Enjoy!

9

